检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ning Zhang Wenhe Li Haoxiang Chen Binshu Jia Pei Deng
机构地区:[1]School of Information,Central University of Finance and Economics,Beijing 100081,China [2]SDIC Taikang Trust Co.,Ltd.,Beijing 100034,China
出 处:《Journal of Social Computing》2024年第1期36-45,共10页社会计算(英文)
基 金:supported in part by the Emerging Interdisciplinary Project of Central University of Finance and Economics,Beijing,China.
摘 要:China’s credit bond market has rapidly expanded in recent years.However,since 2014,the number of credit bond defaults has been increasing rapidly,posing enormous potential risks to the stability of the financial market.This study proposed a deep learning approach to predict credit bond defaults in the Chinese market.A convolutional neural network(CNN)was selected as the classification model and to reduce the extreme imbalance between defaulted and non-defaulted bonds,and a generative adversarial network(GAN)was used as the oversampling model.Based on 31 financial and 20 non-financial indicators,we collected Wind data on all credit bonds issued and matured or defaulted from 2014 to 2021.The experimental results showed that our GAN+CNN approach had superior predictive performance with an area under the curve(AUC)of 0.9157 and precision of 0.8871 compared to previous research and other commonly used classification models-including the logistic regression,support vector machine,and fully connected neural network models-and oversampling techniques-including the synthetic minority oversampling technique(SMOTE)and Borderline SMOTE model.For one-year predictions,indicators of solvency,capital structure,and fundamental properties of bonds are proved to be the most important indicators.
关 键 词:credit bond default PREDICTION convolutional neural network imbalanced data processing generative adversarial network
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.93.197