机构地区:[1]华中科技大学同济医学院附属协和医院组织工程与再生医学研究中心,湖北省武汉市430022 [2]华中科技大学同济医学院附属协和医院检验科,湖北省武汉市430022
出 处:《中国组织工程研究》2025年第4期827-838,共12页Chinese Journal of Tissue Engineering Research
基 金:首都医科大学教育教学改革研究课题(2023JYY388),项目负责人:马金辉;中央高水平医院临床科研业务费,中日友好医院“菁英计划”人才培育工程项目(ZRJY2021-TD01),项目负责人:王佰亮;国家自然科学基金面上项目(52373273),项目负责人:王佰亮。
摘 要:背景:磁性纳米材料具有促进干细胞成骨分化和抑制破骨细胞形成等生物活性,并在磁场协同下有效促进损伤骨组织愈合,在骨损伤修复中具有广阔的应用前景。目的:综述磁性纳米材料与磁场促进骨修复的作用机制,及其在骨损伤修复领域的研究进展。方法:在PubMed和Web of Science数据库中进行相关文献检索,检索词为“magnetic nanomaterials,magnetic field,bone repair,bone tissue engineering,stem cell,osteoblast,osteoclast”。检索文献时限为2003-2023年,将其进行筛选和分析,最终纳入98篇文献进行分析。结果与结论:①磁性纳米材料具有促成骨细胞分化、抑制破骨细胞形成和调节免疫微环境等生物效应;此外,磁性纳米材料可调节组织工程支架的机械性能和表面形貌等理化性质,并赋予其磁性,有利于调控干细胞的黏附、增殖与成骨分化。②磁场具有调控细胞内多条信号通路发挥促成骨细胞分化、抑制破骨细胞形成和刺激血管生成等生物学效应,从而加速损伤的骨组织愈合。③磁性纳米材料与磁场的联合应用,通过激活机械转导、增加细胞内磁性纳米粒子含量、增强微磁场效应等加速骨损伤修复,为骨组织工程的研究提供了新的思路。④磁场在临床骨折、骨质疏松症和骨关节炎疾病的治疗中展现出确切疗效,促进骨组织生长、减轻骨质流失和缓解疼痛,改善患者的生活质量。⑤磁性纳米材料与磁场在骨损伤修复与再生中应用潜力大,但磁性纳米材料、磁场和细胞之间的相互作用机制尚未完全阐明,而且磁场调控细胞内分子事件的关键参数,包括磁场类型、强度、频率、作用时间和作用方式等,以及特定磁场对骨细胞的精确生物效应和潜在机制仍有待明确。⑥未来需要进一步关注其对损伤组织微环境中的破骨细胞、神经、血管和免疫细胞的影响,而关于磁性材料用于人体安全性问题,有BACKGROUND:Magnetic nanomaterials have biological activities such as promoting osteogenic differentiation of stem cells and inhibiting osteoclast formation,and can effectively promote the healing of injured bone tissue under the synergistic effect of magnetic fields.They have a very broad application prospect in bone injury repair.OBJECTIVE:To review the mechanism of magnetic nanomaterials and magnetic fields promoting bone repair,as well as their research progress in the field of bone injury repair.METHODS:Relevant literature search was conducted in PubMed and Web of Science databases with the search terms“magnetic nanomaterials,magnetic field,bone repair,bone tissue engineering,stem cell,osteoblast,osteoclast.”The time limit of literature search was from 2003 to 2023,which was screened and analyzed.Some classic articles were manually retrieved,and 98 articles were finally included for analysis.RESULTS AND CONCLUSION:(1)Magnetic nanomaterials have biological effects such as promoting osteoblast differentiation,inhibiting osteoclast formation and regulating the immune microenvironment.In addition,magnetic nanomaterials can regulate the physicochemical properties of tissue engineering scaffolds,such as mechanical properties and surface morphology,and endowed with magnetic properties,which is conducive to the regulation of the adhesion,proliferation and osteogenic differentiation of stem cells.(2)The magnetic field has the ability to regulate multiple cell signaling pathways to promote osteoblast differentiation,inhibit osteoclast formation,stimulate angiogenesis and other biological effects,thus accelerating the healing of damaged bone tissue.(3)The joint application of magnetic nanomaterials and magnetic field accelerates the repair of bone damage by activating mechanotransduction,increasing the content of intracellular magnetic nanoparticles,and enhancing the effect of micro-magnetic field,which provides a new idea for the research of bone tissue engineering.(4)Magnetic field has demonstrated definite effica
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...