出 处:《中国组织工程研究》2025年第2期279-285,共7页Chinese Journal of Tissue Engineering Research
基 金:沃华科研基金(BYPDF2331201),项目负责人:侯成志。
摘 要:背景:已有研究表明,骨疏康通过调节核苷酸、氨基酸代谢和免疫机制影响骨骼代谢,目前骨疏康治疗骨质疏松症的机制研究主要聚焦于调控成骨细胞,对破骨细胞的关注较少。目的:以RAW 264.7细胞为实验对象,从破骨细胞角度探讨骨疏康治疗骨质疏松症的机制。方法:取8周龄雌性SD大鼠24只,采用随机数字表法分为4组(n=6),3个实验组分别灌胃给予1,2,4 g/kg的骨疏康药液(2次/d),对照组灌胃给予等量蒸馏水(2次/d),连续灌胃7 d后抽取大鼠主动脉血,离心收集血清,同组血清合并,获得低、中、高浓度的骨疏康含药血清及正常血清,进行后续实验。①将RAW 264.7细胞分6组培养:对照组加入正常血清,低、中、高浓度组分别加入低、中、高浓度的骨疏康含药血清,Nrf2抑制剂组加入核因子E2相关因子2(nuclear factor erythroid 2-related factor 2,Nrf2)抑制剂ML385,Nrf2激活剂组加入Nrf2激活剂t-BHQ,采用CCK8法检测细胞相对活性。②将第3代RAW 264.7细胞分5组培养:空白对照组加入正常血清,破骨组加入核因子κB受体活化因子配体(receptor activator of nuclear factorκB ligand,RANKL),低、中、高浓度组在加入RANKL的基础上分别加入低、中、高浓度的骨疏康含药血清,培养5 d后进行抗酒石酸酸性磷酸染色。③将RAW 264.7细胞分5组培养:空白对照组加入正常血清,破骨组加入正常血清与RANKL,高浓度+破骨组加入RANKL+高浓度骨疏康含药血清,破骨+Nrf2激动剂组加入RANKL+t-BHQ,高浓度+破骨+Nrf2抑制剂组加入RANKL+高浓度骨疏康含药血清+ML385,培养5 d后进行Western Blot与活性氧含量检测。结果与结论:①CCK8检测结果显示,骨疏康含药血清及Nrf2抑制剂、激动剂对RAW 264.7细胞活力无明显影响;②抗酒石酸酸性磷酸染色结果显示,骨疏康含药血清呈浓度依赖性抑制破骨细胞的分化;③Western Blot与活性氧含量检测结果显示,与空白对照组比较,破骨�BACKGROUND:It has been shown that Gushukang affects bone metabolism by regulating nucleotide and amino acid metabolism and immune mechanisms.Current research on the mechanism of Gushukang in the treatment of osteoporosis primarily focuses on osteoblast regulation and requires further improvement from the perspective of osteoclasts.OBJECTIVE:To investigate the mechanism by which Gushukang interferes with osteoclasts in the treatment of osteoporosis using RAW264.7 cells as the research model.METHODS:Twenty-four 8-week-old female Sprague-Dawley rats were randomly divided into four groups(n=6 per group):the three experimental groups were given 1,2 and 4 g/kg osteoporosis solution by gavage(2 times per day),and the control group was given an equal amount of distilled water by gavage(2 times per day).After 7 days of intragastric administration,aortic blood samples were extracted to collect serum samples using centrifugation,and serum samples from the same groups were combined to obtain the low-,medium-,and high-concentration Gushukang-containing and normal sera for the subsequent experiments.(1)RAW264.7 cells were cultured in six groups:normal serum was added to the control group;low,medium,and high concentration groups were added with low,medium,and high concentrations of Gushukang-containing serum,respectively;ML385,a nuclear factor erythroid 2-related factor 2(Nrf2)inhibitor was given in the Nrf2 inhibitor group;and t-BHQ,a Nrf2 activator,was added in the Nrf2 activator group.Cell viability was detected using the cell counting kit-8 assay.(2)The 3rd generation RAW 264.7 cells were cultured and divided into five groups:the blank control group was added with normal serum,the osteoclast group was added with receptor activator of nuclear factorκB ligand(RANKL),and the low-,medium-,and high-concentration groups were added with low-,medium-,and high-concentration Gushukang-containing serum based on the addition of RANKL.Tartrate-resistant acid phosphate staining was performed after 5 days of culture.(3)RAW264.7 cells wer
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...