The twisted conical Kahler-Ricci solitons on Fano manifolds  

在线阅读下载全文

作  者:Xishen Jin Jiawei Liu 

机构地区:[1]School of Mathematics,Renmin University of China,Beijing 100872,China [2]School of Mathematics and Statistics,Nanjing University of Science&Technology,Nanjing 210094,China

出  处:《Science China Mathematics》2024年第5期1085-1102,共18页中国科学(数学)(英文版)

基  金:supported by National Natural Science Foundation of China(Grant No.12001532);supported by the Special Priority Program SPP 2026“Geometry at Infinity”from the German Research Foundation(DFG)。

摘  要:In this paper,we show the relation between the existence of twisted conical K?hler-Ricci solitons and the greatest log Bakry-Emery-Ricci lower bound on Fano manifolds.This is based on our proofs of some openness theorems on the existence of twisted conical Kahler-Ricci solitons,which generalize Donaldson’s existence conjecture and the openness theorem of the conical K?hler-Einstein metrics to the conical soliton case.

关 键 词:greatest log Bakry-Emery-Ricci lower bound twisted conical Kahler-Ricci soliton twisted Kahler-Ricci soliton 

分 类 号:O186.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象