Blood Pressure Estimation with Phonocardiogram on CNN-Based Approach  

在线阅读下载全文

作  者:Kasidit Kokkhunthod Khomdet Phapatanaburi Wongsathon Pathonsuwan Talit Jumphoo Patikorn Anchuen Porntip Nimkuntod Monthippa Uthansakul Peerapong Uthansakul 

机构地区:[1]School of Telecommunication Engineering,Suranaree University of Technology,Nakhon Ratchasima,30000,Thailand [2]Telecommunications Engineering,Rajamangala University of Technology Isan,Nakhon Ratchasima,30000,Thailand [3]Navaminda Kasatriyadhiraj Royal Air Force Academy,Saraburi,18180,Thailand [4]Institute of Medicine,Suranaree University of Technology Hospital,Nakhon Ratchasima,30000,Thailand

出  处:《Computers, Materials & Continua》2024年第5期1775-1794,共20页计算机、材料和连续体(英文)

基  金:Suranaree University of Technology,Thailand Science Research and Innovation(TSRI);National Science,Research,and Innovation Fund(NSRF)(NRIIS Number 179292).

摘  要:Monitoring blood pressure is a critical aspect of safeguarding an individual’s health,as early detection of abnormal blood pressure levels facilitates timely medical intervention,ultimately leading to a reduction in mortality rates associated with cardiovascular diseases.Consequently,the development of a robust and continuous blood pressure monitoring system holds paramount significance.In the context of this research paper,we introduce an innovative deep learning regression model that harnesses phonocardiogram(PCG)data to achieve precise blood pressure estimation.Our novel approach incorporates a convolutional neural network(CNN)-based regression model,which not only enhances its adaptability to spatial variations but also empowers it to capture intricate patterns within the PCG signals.These advancements contribute significantly to the overall accuracy of blood pressure estimation.To substantiate the effectiveness of our proposed method,we meticulously gathered PCG signal data from 78 volunteers,adhering to the ethical guidelines of Suranaree University of Technology(Human Research Ethics number EC-65-78).Subsequently,we rigorously preprocessed the dataset to ensure its integrity.We further employed a K-fold cross-validation procedure for data division and alignment,combining the resulting datasets with a CNNfor blood pressure estimation.The experimental results are highly promising,yielding aMeanAbsolute Error(MAE)and standard deviation(STD)of approximately 10.69±7.23 mmHg for systolic pressure and 6.89±5.22 mmHg for diastolic pressure.Our study underscores the potential for precise blood pressure estimation,particularly using PCG signals,paving the way for a practical,non-invasive method with broad applicability in the healthcare domain.Early detection of abnormal blood pressure levels can facilitate timely medical interventions,ultimately reducing cardiovascular disease-related mortality rates.

关 键 词:Blood pressure PHONOCARDIOGRAM CNN-based deep learning 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] R544[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象