检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ChunhuaWang Wenqian Shang Tong Yi Haibin Zhu
机构地区:[1]State Key Laboratory of Media Convergence and Communication,Communication University of China,Beijing,100024,China [2]School of Computer and Cyber Sciences,Communication University of China,Beijing,100024,China [3]School of Computer Science and Engineering,Guangxi Normal University,Guilin,541004,China [4]Department of Computer Science,Nipissing University,North Bay,ON P1B 8L7,Canada
出 处:《Computers, Materials & Continua》2024年第5期1939-1956,共18页计算机、材料和连续体(英文)
基 金:the Communication University of China(CUC230A013);the Fundamental Research Funds for the Central Universities.
摘 要:The advent of self-attention mechanisms within Transformer models has significantly propelled the advancement of deep learning algorithms,yielding outstanding achievements across diverse domains.Nonetheless,self-attention mechanisms falter when applied to datasets with intricate semantic content and extensive dependency structures.In response,this paper introduces a Diffusion Sampling and Label-Driven Co-attention Neural Network(DSLD),which adopts a diffusion sampling method to capture more comprehensive semantic information of the data.Additionally,themodel leverages the joint correlation information of labels and data to introduce the computation of text representation,correcting semantic representationbiases in thedata,andincreasing the accuracyof semantic representation.Ultimately,the model computes the corresponding classification results by synthesizing these rich data semantic representations.Experiments on seven benchmark datasets show that our proposed model achieves competitive results compared to state-of-the-art methods.
关 键 词:Semantic representation sampling attention label-driven co-attention attention mechanisms
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.59.209