A HEVC Video Steganalysis Method Using the Optimality of Motion Vector Prediction  

在线阅读下载全文

作  者:Jun Li Minqing Zhang Ke Niu Yingnan Zhang Xiaoyuan Yang 

机构地区:[1]College of Cryptography Engineering,Engineering University of the Chinese People’s Armed Police Force,Xi’an,710086,China [2]Key Laboratory of Network and Information Security of the Chinese People’s Armed Police Force,Xi’an,710086,China

出  处:《Computers, Materials & Continua》2024年第5期2085-2103,共19页计算机、材料和连续体(英文)

基  金:the National Natural Science Foundation of China(Grant Nos.62272478,62202496,61872384).

摘  要:Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detection performance,this paper proposes a steganalysis method that can perfectly detectMV-based steganography in HEVC.Firstly,we define the local optimality of MVP(Motion Vector Prediction)based on the technology of AMVP(Advanced Motion Vector Prediction).Secondly,we analyze that in HEVC video,message embedding either usingMVP index orMVD(Motion Vector Difference)may destroy the above optimality of MVP.And then,we define the optimal rate of MVP as a steganalysis feature.Finally,we conduct steganalysis detection experiments on two general datasets for three popular steganographymethods and compare the performance with four state-ofthe-art steganalysis methods.The experimental results demonstrate the effectiveness of the proposed feature set.Furthermore,our method stands out for its practical applicability,requiring no model training and exhibiting low computational complexity,making it a viable solution for real-world scenarios.

关 键 词:Video steganography video steganalysis motion vector prediction motion vector difference advanced motion vector prediction local optimality 

分 类 号:TN918[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象