检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Han Zhou HongtaoXu Xinyue Chang Wei Zhang Heng Dong
机构地区:[1]Digital Fujian Research Institute of Big Data forAgriculture and Forestry,Fujian Agriculture and Forestry University,Fuzhou,350002,China [2]College of Computer and Information Science,Fujian Agriculture and Forestry University,Fuzhou,350002,China
出 处:《Computers, Materials & Continua》2024年第5期2295-2313,共19页计算机、材料和连续体(英文)
基 金:National Natural Science Foundation of China(Grant Nos.62171130,62172197,61972093);the Natural Science Foundation of Fujian Province(Grant Nos.2020J01573,2022J01131257,2022J01607);Fujian University Industry University Research Joint Innovation Project(No.2022H6006);in part by the Fund of Cloud Computing and BigData for SmartAgriculture(GrantNo.117-612014063);NationalNatural Science Foundation of China(Grant No.62301160);Nature Science Foundation of Fujian Province(Grant No.2022J01607).
摘 要:Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes.However,these methods often lack constraint information and overlook semantic consistency,limiting their performance.To address these issues,we present a novel approach for medical image registration called theDual-VoxelMorph,featuring a dual-channel cross-constraint network.This innovative network utilizes both intensity and segmentation images,which share identical semantic information and feature representations.Two encoder-decoder structures calculate deformation fields for intensity and segmentation images,as generated by the dual-channel cross-constraint network.This design facilitates bidirectional communication between grayscale and segmentation information,enabling the model to better learn the corresponding grayscale and segmentation details of the same anatomical structures.To ensure semantic and directional consistency,we introduce constraints and apply the cosine similarity function to enhance semantic consistency.Evaluation on four public datasets demonstrates superior performance compared to the baselinemethod,achieving Dice scores of 79.9%,64.5%,69.9%,and 63.5%for OASIS-1,OASIS-3,LPBA40,and ADNI,respectively.
关 键 词:Medical image registration cross constraint semantic consistency directional consistency DUAL-CHANNEL
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49