检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhifang Liao Xuechun Huang Bolin Zhang Jinsong Wu Yu Cheng
机构地区:[1]the School of Computer Science and Engineering,Central South University,Changsha 410083,China [2]the School of Artificial Intelligence,Guilin University of Electronic Technology,Guilin 541004,China [3]the Department of Electrical Engineering,University of Chile,Santiago 8320000 [4]Hunan Glozeal Science and Technology Co.,Ltd.,Changsha 410083,China
出 处:《Intelligent and Converged Networks》2023年第3期181-197,共17页智能与融合网络(英文)
摘 要:As various software bots are widely used in open source software repositories,some drawbacks are coming to light,such as giving newcomers non-positive feedback and misleading empirical studies of software engineering researchers.Several techniques have been proposed by researchers to perform bot detection,but most of them are limited to identifying bots performing specific activities,let alone distinguishing between GitHub App and OAuth App.In this paper,we propose a bot detection technique for OAuth App,named BDGOA.24 features are used in BDGOA,which can be divided into three dimensions:account information,account activity,and text similarity.To better explore the behavioral features,we define a fine-grained classification of behavioral events and introduce self-similarity to quantify the repeatability of behavioral sequence.We leverage five machine learning classifiers on the benchmark dataset to conduct bot detection,and finally choose random forest as the classifier,which achieves the highest F1-score of 95.83%.The experimental results comparing with the state-of-the-art approaches also demonstrate the superiority of BDGOA.
关 键 词:Github DevBots machine learning text similarity
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7