BDGOA:A bot detection approach for GitHub OAuth Apps  

在线阅读下载全文

作  者:Zhifang Liao Xuechun Huang Bolin Zhang Jinsong Wu Yu Cheng 

机构地区:[1]the School of Computer Science and Engineering,Central South University,Changsha 410083,China [2]the School of Artificial Intelligence,Guilin University of Electronic Technology,Guilin 541004,China [3]the Department of Electrical Engineering,University of Chile,Santiago 8320000 [4]Hunan Glozeal Science and Technology Co.,Ltd.,Changsha 410083,China

出  处:《Intelligent and Converged Networks》2023年第3期181-197,共17页智能与融合网络(英文)

摘  要:As various software bots are widely used in open source software repositories,some drawbacks are coming to light,such as giving newcomers non-positive feedback and misleading empirical studies of software engineering researchers.Several techniques have been proposed by researchers to perform bot detection,but most of them are limited to identifying bots performing specific activities,let alone distinguishing between GitHub App and OAuth App.In this paper,we propose a bot detection technique for OAuth App,named BDGOA.24 features are used in BDGOA,which can be divided into three dimensions:account information,account activity,and text similarity.To better explore the behavioral features,we define a fine-grained classification of behavioral events and introduce self-similarity to quantify the repeatability of behavioral sequence.We leverage five machine learning classifiers on the benchmark dataset to conduct bot detection,and finally choose random forest as the classifier,which achieves the highest F1-score of 95.83%.The experimental results comparing with the state-of-the-art approaches also demonstrate the superiority of BDGOA.

关 键 词:Github DevBots machine learning text similarity 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象