Performance evaluation of DHRR-RIS based HP design using machine learning algorithms  

在线阅读下载全文

作  者:Girish Kumar N G Sree Ranga Raju M N 

机构地区:[1]the Department of Electronics and Telecommunication Engineering,Bangalore Institute of Technology,Visvesvaraya Technological University,Bangalore 560004,India [2]the Department of Electronics and Communication Engineering,Bangalore Institute of Technology,Visvesvaraya Technological University,Bangalore 560004,India

出  处:《Intelligent and Converged Networks》2023年第3期237-260,共24页智能与融合网络(英文)

摘  要:Reconfigurable Intelligent Surfaces(RIS)have emerged as a promising technology for improving the reliability of massive MIMO communication networks.However,conventional RIS suffer from poor Spectral Efficiency(SE)and high energy consumption,leading to complex Hybrid Precoding(HP)designs.To address these issues,we propose a new low-complexity HP model,named Dynamic Hybrid Relay Reflecting RIS based Hybrid Precoding(DHRR-RIS-HP).Our approach combines active and passive elements to cancel out the downsides of both conventional designs.We first design a DHRR-RIS and optimize the pilot and Channel State Information(CSI)estimation using an adaptive threshold method and Adaptive Back Propagation Neural Network(ABPNN)algorithm,respectively,to reduce the Bit Error Rate(BER)and energy consumption.To optimize the data stream,we cluster them into private and public streams using Enhanced Fuzzy C-Means(EFCM)algorithm,and schedule them based on priority and emergency level.To maximize the sum rate and SE,we perform digital precoder optimization at the Base Station(BS)side using Deep Deterministic Policy Gradient(DDPG)algorithm and analog precoder optimization at the DHRR-RIS using Fire Hawk Optimization(FHO)algorithm.We implement our proposed work using MATLAB R2020a and compare it with existing works using several validation metrics.Our results show that our proposed work outperforms existing works in terms of SE,Weighted Sum Rate(WSR),and BER.

关 键 词:Reconfigurable Intelligent Surfaces(RIS) Dynamic Hybrid Relay Reflecting(DHRR)-RIS Multi User Multiple Input Multiple Output(MU-MIMO) hybrid precoder machine learning and deep learning algorithms channel state estimation 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象