Using a novel ensemble learning framework to detect financial reporting misconduct  

在线阅读下载全文

作  者:Siqi Pan Qiang Ye Wen Shi 

机构地区:[1]School of Management,Harbin Institute of Technology,Harbin,People’s Republic of China [2]School of Electrical and Information,Northeast Agricultural University,Harbin,People’s Republic of China

出  处:《Journal of Management Analytics》2023年第4期607-624,共18页管理分析学报(英文)

基  金:National Natural Science Foundation of China under[grant numbers 72071038,72121001].

摘  要:Our research focuses on detecting financial reporting misconduct and derives acomprehensive misconduct sample using AAERs and intentional restatements.We develop a novel ensemble learning method, Multi-LightGBM, for highlyimbalanced classification learning. We adopt a human-machine cooperationfeature selection method, which can mitigate the limitation of incompletetheories, enhance the model performance, and guide researchers to develop newtheories. We propose a cost-based measure, expected benefits of classification,to evaluate the economic performance of a model. The out-of-sample testsshow that Multi-LightGBM, coupled with the features we selected, outperformsother predictive models. The finding that introducing intentional materialrestatements into our predictive model does not reduce the effectiveness ofcapturing AAERs has important implications for research on AAERsdetection. Moreover, we can identify more misconduct firms with fewerresources by the misconduct sample relative to the standalone AAERs sample,which is quite beneficial for most model users.

关 键 词:financial reporting misconduct ensemble learning feature selection LightGBM 

分 类 号:C93[经济管理—管理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象