基于知识图谱的大坝安全智能监控预警方法  被引量:1

Intelligent Monitoring and Early Warning Method for Dam Safety Based on Knowledge Graph

在线阅读下载全文

作  者:龚士林 孙辅庭 黄维 陈铿 沈海尧 GONG Shilin;SUN Futing;HUANG Wei;CHEN Keng;SHEN Haiyao(Huadong Eng.Co.,Ltd.,Power Construction Co.,of China,Hangzhou 310014,China;Large Dam Supervision Center,National Energy Administration,Hangzhou 311122,China;College of Computer Sci.and Technol.,Zhejiang Univ.,Hangzhou 310015,China)

机构地区:[1]中国电建集团华东勘测设计研究院有限公司,浙江杭州310014 [2]国家能源局大坝安全监察中心,浙江杭州311122 [3]浙江大学计算机科学与技术学院,浙江杭州310015

出  处:《工程科学与技术》2024年第3期32-40,共9页Advanced Engineering Sciences

基  金:国家重点研发计划资助项目(2021YFC3090100);中国博士后科学基金资助项目(2023M733315)。

摘  要:大坝监测点数量众多、分布无序,传统监控方法难以描述监测点之间的空间关系和结构机理关联特性。针对此问题,本文提出一种基于知识图谱的大坝安全智能监控预警方法。首先,参照知识图谱要素特征,明确大坝监测点命名规则、拟定监测点空间相邻关系和数据序列相似关系的判定规则、提取监测点的内在属性特征,提出大坝安全监控知识体系;其次,以Neo4j图数据库为基底,采用网状图结构描述监测点的复杂关系和内部特征,构建大坝安全监控知识图谱;然后,基于图数据库知识引导和多级关系查询能力,建立监测点的关联响应机制,将异常监测点识别出来并划分为不同异常测点组,明确各异常测点组之间的结构机理关联特性;进一步,提出多测点聚集度概念并构建异常测点组的空间影响区域算法,并以坝体的异常影响区域为核心计算大坝运行性态分数,从大坝整体结构层面进行综合监控预警;最后,以一座混凝土重力坝的部分坝段为例,验证所提出方法的可行性。研究表明:该方法充分利用知识图谱在信息融合、类脑推理方面的优势,将大坝监测点整合成数据网络进行统一分析,提出异常监测点的结构影响区域概念,并以此为依据对大坝安全进行评判,在综合考虑监测点数量、空间分布、结构机理关联特性情况下实现多测点大坝安全监控预警。and fuzzy.Moreover,the dam has numerous monitoring points with disordered distri-bution,making it difficult for traditional monitoring methods to describe the complex relationships among monitoring points,such as spatial rela-tionships and structural mechanism correlations.Additionally,there is a lack of suitable platforms to systematically summarize and infer these monitoring points and their various complex relationships,thereby enabling comprehensive monitoring and early warning of dam safety from a holistic structural perspective.In response to these issue,a dam safety intelligent monitoring and early warning method based on knowledge graph was proposed.Methods Firstly,according to the regulations in“Drawing standard for hydraulic structure of hydropower and water conservancy project”,monit-oring points were named and distinguished in a combination of letters and numbers,forming distinguishable and independent entities.Referring to the manual determination of adjacent monitoring points,two adjacent conditions determining rules were proposed based on spatial mathematical models to form an automatic determination method for monitoring point spatial adjacency relationships.Addressing the common issues of vary-ing lengths and time-step misalignment in data sequences of monitoring points,a rule for determining data sequence similarity based on dynamic time warping distance was proposed,achieving automatic determination of spatial adjacency relationships and data sequence similarity relation-ships between monitoring points.By analyzing the internal characteristics of monitoring points,the monitored physical quantity,single monitor-ing point warning level,and affiliated components were designated as object properties,while the three-dimensional coordinates,current monitor-ing data,and historical monitoring data were designated as data properties,forming intrinsic attribute information of monitoring points.Through the above arrangement,the characteristics of entities,relationships,and attributes centered around d

关 键 词:知识图谱 大坝 多测点 监控预警 聚集度 多级查询 

分 类 号:TV39[水利工程—水工结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象