A Dual-Task Learning Approach for Bearing Anomaly Detection and State Evaluation of Safe Region  

在线阅读下载全文

作  者:Yuhua Yin Zhiliang Liu Bin Guo Mingjian Zuo 

机构地区:[1]School of Mechanical and Electrical Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China [2]Qingdao International Academician Park Research Institute,Qingdao 266041,China

出  处:《Chinese Journal of Mechanical Engineering》2024年第1期229-241,共13页中国机械工程学报(英文版)

基  金:Supported by Sichuan Provincial Key Research and Development Program of China(Grant No.2023YFG0351);National Natural Science Foundation of China(Grant No.61833002).

摘  要:Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance on anomaly detection to preempt equipment malfunctions faces the challenge of sudden anomaly discernment.To address this challenge,this paper proposes a dual-task learning approach for bearing anomaly detection and state evaluation of safe regions.The proposed method transforms the execution of the two tasks into an optimization issue of the hypersphere center.By leveraging the monotonicity and distinguishability pertinent to the tasks as the foundation for optimization,it reconstructs the SVDD model to ensure equilibrium in the model’s performance across the two tasks.Subsequent experiments verify the proposed method’s effectiveness,which is interpreted from the perspectives of parameter adjustment and enveloping trade-offs.In the meantime,experimental results also show two deficiencies in anomaly detection accuracy and state evaluation metrics.Their theoretical analysis inspires us to focus on feature extraction and data collection to achieve improvements.The proposed method lays the foundation for realizing predictive maintenance in a healthy stage by improving condition awareness in safe regions.

关 键 词:Bearing condition monitoring Anomaly detection Safe region Support vector data description 

分 类 号:TP1[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象