Application of SABO-VMD-KELM in Fault Diagnosis of Wind Turbines  

在线阅读下载全文

作  者:Yuling HE Hao CUI 

机构地区:[1]Department of Mechanical Engineering,North China Electric Power University,Baoding,Hebei,071003,China

出  处:《Mechanical Engineering Science》2023年第2期23-29,共7页机械工程(英文)

摘  要:In order to improve the accuracy of wind turbine fault diagnosis,a wind turbine fault diagnosis method based on Subtraction-Average-Based Optimizer(SABO)optimized Variational Mode Decomposition(VMD)and Kernel Extreme Learning Machine(KELM)is proposed.Firstly,the SABO algorithm was used to optimize the VMD parameters and decompose the original signal to obtain the best modal components,and then the nine features were calculated to obtain the feature vectors.Secondly,the SABO algorithm was used to optimize the KELM parameters,and the training set and the test set were divided according to different proportions.The results were compared with the optimized model without SABO algorithm.The experimental results show that the fault diagnosis method of wind turbine based on SABO-VMD-KELM model can achieve fault diagnosis quickly and effectively,and has higher accuracy.

关 键 词:Wind turbine generator Fault diagnosis Subtraction-Average-Based Optimizer(SABO) Variational Mode Decomposition(VMD) Kernel Extreme Learning Machine(KELM) 

分 类 号:P31[天文地球—固体地球物理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象