高光谱成像技术在农产品品质检测中的应用及局限性分析  被引量:2

Application and Limitation Analysis of Hyperspectral Imaging Technology in Quality Detection of Agricultural Products

在线阅读下载全文

作  者:孙大明[1] 叶彤[1] 赵伟 张鑫 李志博 聂美玲 邢璐露[1] 刘兴博[1] 杨金砖[1] 李昕怿 张瑾 吴世凯 SUN Daming;YE Tong;ZHAO Wei;ZHANG Xin;LI Zhibo;NIE Meiling;XING Lulu;LIU Xingbo;YANG Jinzhuan;LI Xinyi;ZHANG Jin;WU Shikai(Heilongjiang Academy of Agricultural Machinery Sciences,Harbin 150081,China;Jiefang Township Yi’an County Rural Economic Development Service Center,Yi’an 161533,Chian;Sanxing Town Government,Yi’an County,Yi’an 161533,China)

机构地区:[1]黑龙江省农业机械工程科学研究院,哈尔滨150081 [2]依安县解放乡乡村经济发展服务中心,黑龙江依安161533 [3]依安县三兴镇镇政府,黑龙江依安161533

出  处:《农机使用与维修》2024年第5期126-128,共3页Agricultural Machinery Using & Maintenance

摘  要:近年来,农产品无损检测技术得到快速发展。高光谱成像技术将光谱信息与图像信息相结合,弥补了光谱信息的不足,相较传统检测技术具有精度高、无污染、无破坏性等特点,因此在农产品无损检测领域具有良好的应用前景。基于此分析了高光谱成像技术在无损检测中的应用情况,包括农产品分级分类、损伤检测、表面农残检测、营养成分快速检测等,并对高光谱成像技术在农产品领域的发展趋势和局限性进行分析,以期为农产品无损检测提供参考。In recent years,non-destructive testing technology for agricultural products has developed rapidly.Hyperspectral imaging technology combines spectral information with image information,making up for the shortcomings of spectral information.Compared to traditional detection technologies,it has characteristics such as high accuracy,no pollution,and no destruction.Therefore,it has good application prospects in the field of non-destructive testing of agricultural products.Based on this,the process of hyperspectral image information processing was analyzed,and the application of hyperspectral imaging technology in non-destructive testing was introduced,including agricultural product classification,damage detection,maturity analysis,quality index detection,etc.The development trend and limitations of hyperspectral imaging technology in the field of agricultural products were analyzed.

关 键 词:高光谱成像 无损检测 农产品 品质 

分 类 号:S220[农业科学—农业机械化工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象