检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶辉映 张榕 刘子蔚 胡秋根 YE Huiying;ZHANG Rong;LIU Ziwei;HU Qiugen(Department of Radiology,Shunde Hospital,Southern Medical University(The First People's Hostital of Shunde),Foshan 528308,China)
机构地区:[1]南方医科大学顺德医院(佛山市顺德区第一人民医院)放射科,广东佛山528308
出 处:《分子影像学杂志》2024年第4期358-367,共10页Journal of Molecular Imaging
基 金:广东省中医药局科研项目(20241312);佛山市科技计划项目(2220001005383);南方医科大学顺德医院科研启动计划项目(SPSP2021021)。
摘 要:目的 探讨基于临床影像征象和影像组学联合模型对冠状动脉易损斑块发生的预测价值,并通过Shapley算法对模型进行可视化分析。方法 回顾性收集2016~2020年南方医科大学顺德医院确诊冠心病并且行2次CCTA检查的患者383例,提取相应区域的影像组学特征。使用多步联合方法筛选出各区域最佳特征后进行联合建模。通过Logistic回归方法筛选重要临床影像征象,最后构建可解释的XGBoost临床影像模型。利用Shapley算法对模型分别进行可视化和特征贡献度解释。结果 相比单区域影像组学模型,多区域影像组学模型展现出更高的预测性能(AUC=0.701)。结合重要临床影像征象的联合模型性能进一步提高(AUC=0.885)。利用Shapley分析算法对特征重要性进行解析,前6个组学特征对模型结果预测具有贡献度,Shapley热图算法实现了易损斑块发生的预测推演可视化过程。结论 临床影像组学联合模型对冠状动脉易损斑块的预测具有较高的准确性和泛化性。可解释机器学习算法的可视化保障了模型的实用性,为临床制定针对性治疗方案提供了一种无创工具。Objective To explore the predictive value of a combined model based on clinical imaging features and radiomics for the occurrence of vulnerable coronary artery plaques,and visualize the model through Shapley algorithm for further analysis.Methods A retrospective study was conducted on 383 patients diagnosed with coronary heart disease and who underwent two CCTA examinations at Shunde Hospital of Southern Medical University from 2016 to 2020.Radiomics features were extracted from the corresponding regions of interest.A multi-step combined method was used to select the best features from each region for joint modeling.Logistic regression was employed to select important clinical imaging features,and an interpretable XGBoost clinical imaging model was constructed.The Shapley algorithm was utilized to visualize the model and interpret the feature contributions.Results Compared with single-region radiomics models,multi-region radiomics models demonstrated higher predictive performance(AUC=0.701).Combining important clinical imaging features with the joint model improved the performance even further(AUC=0.885).By analyzing the feature importance using the Shapley analysis algorithm,it was found that the first six radiomics features contributed significantly to the model's predictive results.The Shapley heatmap algorithm visualized the prediction process of vulnerable plaque occurrence.Conclusion The clinical radiomics combined model shows high accuracy and generalizability in predicting vulnerable coronary artery plaques.The visualization of interpretable machine learning algorithms ensures the practicality of the model,providing a non-invasive tool for the development of targeted treatment plans in clinical practice.
关 键 词:冠状动脉疾病 易损斑块 影像组学 机器学习 无创评估模型
分 类 号:R541.4[医药卫生—心血管疾病] R816.2[医药卫生—内科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.247.50