检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王夏鑫 周健 WANG Xia-xin;ZHOU Jian(School of Mathematics and Statistics,Kashgar University,Kashgar 844000,Xinjiang,China;School of Economics and Management,Qilu Normal University,Jinan 250202,China)
机构地区:[1]喀什大学数学与统计学院,新疆喀什844000 [2]齐鲁师范学院经济与管理学院,山东济南250202
出 处:《兰州文理学院学报(自然科学版)》2024年第3期30-38,共9页Journal of Lanzhou University of Arts and Science(Natural Sciences)
摘 要:为提高粮食产量的预测精度,合理预测其发展趋势,保障粮食安全,选取2000-2021年中国粮食产量、农业总产值和农业就业人员数据,构建了ARIMA,GM,VAR,MGM,ARIMA-GM-BP,VAR-GM-BP,ARIMA-MGM-BP和VAR-MGM-BP等一系列模型,并以MAPE为评价指标对模型进行拟合和预测精度比较.结果表明:多变量预测模型在预测精度方面优于单变量预测模型,而多变量组合模型又优于单变量组合模型;进一步表明,提升组合模型中单一模型的预测精度有助于提升组合模型的预测精度.最后,研究构建的VAR-MGM-BP组合模型拥有最小的MAPE值,并利用VAR-MGM-BP模型对中国未来五年的粮食产量进行预测.In order to improve the prediction accuracy of grain output,reasonably predict its development trend and guarantee food security.A series of models such as ARIMA,GM,VAR,MGM,ARIMA-GM-BP,VAR-GM-BP,ARIMA-MGM-BP,ARIMA-MGM-BP and VAR-MGM-BP are constructed by selecting the data of China's grain output,agricultural gross output value and agricultural employed persons from 2000 to 2021,and MAPE is used as the evaluation index for model fitting and forecasting accuracy comparison.The results show that the multivariate prediction model is better than the univariate prediction model in terms of prediction accuracy,and the multivariate combination model is in turn better than the univariate combination model,it is further shown that improving the prediction accuracy of a single model in the combination model helps to improve the prediction accuracy of the combination model.Finally,the VAR-MGM-BP combined model constructed in this study has the smallest MAPE value,and the VAR-MGM-BP model is utilized to predict China's grain output in the next five years.
关 键 词:粮食安全 粮食产量 短期预测 VAR-MGM-BP
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90