磁等离子体推进器阳极半径对阳极功率沉降的影响  

Influence of anode radius on anode power deposition of MegnetoPlasmaDynamic thruster

在线阅读下载全文

作  者:唐卓尧 郑金星[1] 刘海洋 陆玉东 杜宜凡 柯茂林 王洛麒 吴梅起 吴涛 史佳明[1] TANG Zhuoyao;ZHENG Jinxing;LIU Haiyang;LU Yudong;DU Yifan;KE Maolin;WANG Luoqi;WU Meiqi;WU Tao;SHI Jiaming(Institute of Plasma Science,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China;University of Science and Technology of China,Hefei 230026,China)

机构地区:[1]中国科学院合肥物质科学研究院等离子体物理研究所,合肥230031 [2]中国科学技术大学,合肥230026

出  处:《核技术》2024年第5期82-90,共9页Nuclear Techniques

摘  要:随着人类航天事业的发展,需要研发适用于不同空间任务的推进系统,与磁约束核聚变原理类似的磁等离子体动力推进器(MegnetoPlasmaDynamic Thruster,MPDT)在推力功率比和比冲方面具有优越性能。阳极功率沉降是MPDT运行过程中等离子体与壁面相互作用的结果,占总功率的40%~90%,严重降低推进器效率。针对该问题,本文从阳极功率沉降的角度探究了阳极半径对推进器效率的影响。基于磁流体力学方程(MagnetoHydroDynamic,MHD),利用数值计算方法建立径向放电参数数值模型和阳极功率沉降物理模型,研究计算了阳极半径对放电参数和阳极功率沉降的影响规律,并建立热仿真模型对阳极水冷散热结构进行了热仿真。研究结果表明:增大阳极半径,电子密度及离子速度得到提高,阳极功率沉降增大,但阳极功率沉降分数降低,推进器效率得到提升。热仿真结果显示,水冷结构阳极在输入阳极功率沉降约为3 kW时,对应的阳极冷却水温差为5 K。本研究验证了阳极功率沉降物理模型的可靠性,并指出增大阳极半径是提升推进器效率的有效手段。[Background]With the development of human aerospace industry,it is necessary to develop propulsion systems suitable for different space mission scenarios.MegnetoPlasmaDynamic thruster(MPDT),which is similar to the principle of magnetic confinement fusion,is a typical representative of electromagnetic thruster,which stands out among many electric thrusters because of its superior performance in thrust power ratio and specific impulse.Anode power deposition is the result of the interaction between plasma and wall during MPDT operation.It is one of the main mechanisms of power loss of this type of thruster,accounting for 40%~90%of the total power,which seriously reduces the efficiency of thruster.[Purpose]This study aims to solve the problem of low efficiency of thruster by investigating the influence of anode radius on the efficiency of thruster from the perspective of anode power deposition.[Methods]First of all,based on MagnetoHydroDynamic(MHD)equations,numerical models for radial discharge parameters and physical model for anode power deposition were established.Then,the influences of anode radius on discharge parameters,anode power deposition and anode power deposition fraction were studied on the basis of these models by numerical calculation method.Finally,a water-cooled structure anode was designed,and the effectiveness of its heat dissipation structure was verified by thermal simulation.[Results]The results show that with the increase of anode radius,the electron density and ion velocity are increased,the anode power deposition fraction is decreased whilst the anode power deposition is increased.The thruster efficiency is improved by increasing the anode radius.The thermal simulation results show that when the input power deposition of the water-cooled structure anode is about 3 kW,the corresponding temperature difference of the anode cooling water is 5 K.[Conclusions]This study verifies the reliability of the physical model of anode power deposition,indicating that increasing the anode radius is an effecti

关 键 词:磁等离子体推进器 阳极功率沉降 数值计算 热仿真 磁流体力学方程 

分 类 号:TL61[核科学技术—核技术及应用]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象