基于ACFM技术表面裂纹检测方法及系统的开发  

Development of Surface Cracks Detection Method and System based on ACFM Technology

在线阅读下载全文

作  者:刘志波 刘利文 严朗平 LIU Zhibo;LIU Liwen;YAN Langping(Heyuan Branch,Guangdong Institute of Special Equipment Inspection and Research,Heyuan 517000,China)

机构地区:[1]广东省特种设备检测研究院河源检测院,广东河源517000

出  处:《新技术新工艺》2024年第4期70-74,共5页New Technology & New Process

基  金:广东省河源市科技局科研项目(河科社发2022103)。

摘  要:设计开发了一种实时高精度ACFM裂纹检测方法和系统。通过扫描承压设备焊缝或母材励磁后产生的感应电磁场,在裂纹等缺陷处获取旋转磁场畸变信号,实时对旋转磁场畸变信号进行识别采集处理和提取相应信息,将旋转磁场畸变信号数字化,从而实现对承压设备的表面裂纹的实时检测。该方法能够有效弥补旋转磁场畸变信号因为扩散效果带来的误差,并对旋转磁场畸变信号进行放大滤波处理,补偿信号强度,提高裂纹检测灵敏度。该方法具有非接触检测,对裂纹的检测能定量并定位,检测要求低,无需对检测表面进行特别处理等优点,提供了一种创新型无损检测手段。It was designed and developed that a real-time and high-precision ACFM crack detection method and system.By scanning the induced electromagnetic field generated by the welding seam of the pressure-bearing equipment or the base material after excitation,the rotating magnetic field distortion signal was obtained at the crack and other defects,and the rotating magnetic field distortion signal was identified,collected and processed in real time and the corresponding information was extracted.The rotating magnetic field distortion signal was digitized,so as to realize the real-time detection of the surface crack of the pressure-bearing equipment.This method could effectively compensate the error caused by the diffusion effect of the rotating magnetic field distortion signal,and amplify and filter the rotating magnetic field distortion signal to compensate the signal strength and improve the sensitivity of crack detection.The method had the advantages of non-contact detection,quantification and location of cracks detection,low detection requirements and no special treatment of the detection surface.It provided an innovative nondestructive testing method.

关 键 词:ACFM 裂纹 旋转磁场畸变信号 检测系统 承压设备 无损检测 

分 类 号:TG115.28[金属学及工艺—物理冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象