检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李明[1,2] 刘东岳 赵良伟 蒋一波[3] LI Ming;LIU Dong-yue;ZHAO Liang-wei;JIANG Yi-bo(School of Business,Hohai University,Nanjing 211100,China;Institute of Project Management Informatization,Hohai University,Nanjing 211100,China;Jiangsu Huaiyin Water Conservancy Construction Co.,Ltd.,Huaian 223005,China)
机构地区:[1]河海大学商学院,江苏南京211100 [2]河海大学项目管理信息化研究所,江苏南京211100 [3]江苏淮阴水利建设有限公司,江苏淮安223005
出 处:《水电能源科学》2024年第5期19-23,共5页Water Resources and Power
基 金:国家社会科学规划基金资助项目(17BGL156);河海大学中央高校基本科研业务费项目(B220207039)。
摘 要:针对地表降水量数据的非线性、非平稳特征,首先利用EEMD对月降水量初始数据进行分解,再利用Lempel-Ziv复杂度算法将分量划分为高频及低频分量,使用粒子群算法(PSO)优化基学习器参数,最终构建EEMD-SVR-ELM月降水量预测模型,并采用该模型对长江下游部分城市的月降水量实际数据进行预测。结果表明,该模型的综合性能最优,具有更高的精确度。相较于单一模型,在M_(MAE)、R_(RMSE)、M_(MAPE)指标上分别降低了37.4%、41.4%、42.5%,DM检验表明该模型显著优于其他模型,说明该模型可作为月降水量预测的一种有效新方法。Aiming at the nonlinearity and non-stationary characteristics of surface precipitation data,a support vector regression(SVR)and extreme learning machine(ELM)are constructed as base learners.Firstly,the initial monthly precipitation data is decomposed based on Empirical Mode Decomposition(EEMD).Then the Lempel-Ziv complexity algorithm is used to divide the components into high-frequency and low-frequency components.The parameters of the base learner are optimized by particle swarm optimization(PSO).Finally,the EEMD-SVR-ELM monthly precipitation prediction model was constructed.Compared with other models,the model has the best comprehensive performance,higher accuracy and generalization.Especially compared with the single model,the M MAE,RRMSE,and M MAPE indicators were reduced by 37.4%,41.4%and 42.5%.The DM test showed that this model was significantly better than other models.This model can be used as an effective new method for monthly precipitation prediction.
关 键 词:月降水量预测 经验模态分解 极限学习机 支持向量回归
分 类 号:TV125[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7