检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiaohan Bao Weihua Tong Falai Chen
出 处:《Communications in Mathematics and Statistics》2023年第3期583-607,共25页数学与统计通讯(英文)
基 金:supported by the National Natural Science Foundation of China(Nos.61877056,61972368);the Anhui Provincial Natural Science Foundation,PR China(No.1908085QA11).
摘 要:Mesh segmentation is a fundamental and critical task in mesh processing,and it has been studied extensively in computer graphics and geometric modeling communities.However,current methods are not well suited for segmenting large meshes which are now common in many applications.This paper proposes a new spectral segmentation method specifically designed for large meshes inspired by multi-resolution representations.Building on edge collapse operators and progressive mesh representations,we first devise a feature-aware simplification algorithm that can generate a coarse mesh which keeps the same topology as the input mesh and preserves as many features of the input mesh as possible.Then,using the spectral segmentation method proposed in Tong et al.(IEEE Trans Vis Comput Graph 26(4):1807–1820,2020),we perform partition on the coarse mesh to obtain a coarse segmentation which mimics closely the desired segmentation of the input mesh.By reversing the simplification process through vertex split operators,we present a fast algorithm which maps the coarse segmentation to the input mesh and therefore obtain an initial segmentation of the input mesh.Finally,to smooth some jaggy boundaries between adjacent parts of the initial segmentation or align with the desired boundaries,we propose an efficient method to evolve those boundaries driven by geodesic curvature flows.As demonstrated by experimental results on a variety of large meshes,our method outperforms the state-of-the-art segmentation method in terms of not only speed but also usability.
关 键 词:Mesh segmentation Spectral method Progressive mesh Feature-aware simplification Geodesic curvature flow
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49