检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jiahao Huang Steffen Jung inger Hui Liu Kerstin Thurow
机构地区:[1]Center for Life Science Automation(CELISCA),University of Rostock,Rostock 18119,Germany [2]Institute of Automation,University of Rostock,Rostock 18119,Germany [3]Institute of Artificial Intelligence&Robotics(IAIR),School of Traffic&Transportation Engineering,Central South University,Changsha 410075,Hunan,China
出 处:《Transportation Safety and Environment》2024年第2期24-35,共12页交通安全与环境(英文)
摘 要:The increasing use of mobile robots in laboratory settings has led to a higher degree of laboratory automation.However,when mobile robots move in laboratory environments,mechanical errors,environmental disturbances and signal interruptions are inevitable.This can compromise the accuracy of the robot’s localization,which is crucial for the safety of staff,robots and the laboratory.A novel time-series predicting model based on the data processing method is proposed to handle the unexpected localization measurement of mobile robots in laboratory environments.The proposed model serves as an auxiliary localization system that can accurately correct unexpected localization errors by relying solely on the historical data of mobile robots.The experimental results demonstrate the effectiveness of this proposed method.
关 键 词:mobile robots laboratory automation indoor localization neural network
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.197.130