检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ning Wang Liang Zheng Huitao Shen Shukai Li
机构地区:[1]School of Traffic and Transportation Engineering,Central South University,Changsha 410075,China [2]State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University,Beijing 100044,China
出 处:《Transportation Safety and Environment》2024年第2期63-74,共12页交通安全与环境(英文)
基 金:supported by the National Natural Science Foundation of China(Grant No.72371251);the National Science Foundation for Distinguished Young Scholars of Hunan Province(Grant No.2024JJ2080);the Excellent Youth Foundation of Hunan Education Department(Grant No.21B0015);the State Key Lab-oratory of Rail Traffic Control and Safety of Beijing Jiaotong Uni-v ersity,China(Gr ant No.RCS2022K004).
摘 要:Accurate demand forecasting for online ride-hailing contributes to balancing traffic supply and demand,and improving the service level of ride-hailing platforms.In contrast to previous studies,which have primarily focused on the inflow or outflow demands of each zone,this study proposes a conditional generative adversarial network with a Wasserstein divergence objective(CWGAN-div)to predict ride-hailing origin-destination(OD)demand matrices.Residual blocks and refined loss functions help to enhance the stability of model training.Interpretable conditional information is employed to capture external spatiotemporal dependencies and guide the model towards generating more precise results.Empirical analysis using ride-hailing data from Manhattan,New York City,demon-strates that our proposed CWGAN-div model can effectively predict the network-wide OD matrix and exhibits strong convergence performance.Comparative experiments also show that the CWGAN-div outperforms other benchmarking methods.Consequently,the proposed model displays potential for network-wide ride-hailing OD demand prediction.
关 键 词:intelligent transport system ride-hailing generative adversarial networks spatiotemporal dependencies origin-destination(OD)demand prediction
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.180.219