Low-complexity model predictive control of a four-level active neutral point clamped inverter without weighting factors  

在线阅读下载全文

作  者:Chaoqun Xiang Ziyin Fan Songyang Jiang Xinan Zhang Shu Cheng 

机构地区:[1]School of Traffic and Transportation Engineering,Central South University,Changsha 410075,Hunan,China [2]CRRC Dalian Electric Traction R&D Center Co.,Ltd,Dalian 116200,Liaoning,China [3]School of Engineering,The University of Western Australia,Perth,WA 6009,Australia

出  处:《Transportation Safety and Environment》2024年第2期96-103,共8页交通安全与环境(英文)

基  金:supported by the National Key Research and Development Program of China(Grant No.2022YFB4201602);the National Natural Science Foundation of China(Grant No.52002409).

摘  要:The four-level active neutral point clamped(ANPC)inverter has become increasingly widely used in the renewable energy indus-try since it offers one more voltage level without increasing the total number of active switches compared to the three-level ANPC inverter.The model predictive current control(MPCC)is a promising control method for multi-level inverters.However,the conven-tional MPCC suffers from high computational complexity and tedious weighting factor tuning in multi-level inverter applications.A low-complexity MPCC without weighting factors for a four-level ANPC inverter is proposed in this paper.The computational burden and voltage vector candidate set are reduced according to the relationship between voltage vector and neutral point voltage balance.The proposed MPCC shows excellent steady-state and dynamics performances while ensuring the neutral point voltage balancing.The efficacy of the proposed MPCC is verified by simulation and experimental results.

关 键 词:four-level active neutral point clamped(ANPC)inverter model predictive current control(MPCC) low complexity without weighting factors 

分 类 号:U260.36[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象