检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈孝国 肖修鸿 苏锦棱 丁一鸣 陈楚楚 CHEN Xiaoguo;XIAO Xiuhong;SU Jinleng;DING Yiming;CHEN Chuchu(School of Information Engineering,Sanming University,Sanming 365004,China)
出 处:《湖州师范学院学报》2024年第4期15-22,共8页Journal of Huzhou University
基 金:福建省自然科学基金项目(2020J01384);福建省中青年教师教育科研项目(JAT190688);三明学院引进高层次人才科研启动项目(19YG01);黑龙江省自然科学基金项目(LH2019E085).
摘 要:为进一步完善直觉模糊熵构造方法,从直觉性和模糊性两个角度,对熵值的变化进行分类讨论;从直觉模糊集空间结构对熵变化规律的影响进行分析,并根据直觉模糊熵的几何图形特点,提出以隶属度最大点为圆心的新等熵圆弧概念;针对两种不同方法构造的等熵圆弧交点处熵相等导致的矛盾问题,提出一种基于TOPSIS法的直觉模糊熵公式,并给出定理证明.In order to further improve the construction method of intuitionistic fuzzy entropy,the changes of entropy are classified and discussed from the perspective of intuition and fuzziness.The influence of the spatial structure of intuitionistic fuzzy sets on the law of entropy change is analyzed.According to the geometric features of intuitionistic fuzzy entropy,a new isentropic circle concept with the maximum membership degree as the center of the circle is proposed.Finally,aiming at the contradiction problem caused by the entropy equal at the intersection of isentropic circle constructed by two different methods,an intuitionistic fuzzy entropy formula based on TOPSIS method is proposed,and the theorem is proved.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147