检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马春生 MA Chunsheng(Nanjing Softcore Co.,Ltd.,Nanjing 210012,China)
出 处:《电工技术》2024年第8期144-147,共4页Electric Engineering
摘 要:为了解决现有技术中电能异常数据信息化分析方法计算效率低、检测精度差等问题,设计了一种新型的电能异常数据分析系统,该系统基于局部矩阵重构(Local Matrix Reconstruction,LMR)实现异常电能数据检测,通过使用5个日负荷特征代替高维日负荷曲线来表征功耗模式。结合主成分分析(Principal Component Analysis,PCA)计算局部范围内的加权重构误差,最后将每个样本的重构误差与其相邻样本进行比较,以计算局部异常值分数。实验结果表明,该系统处理异常电能数据精度高,2 TB测试数据时误差率仅有4.2%。该研究的方法大大提高了异常数据信息化分析能力。In order to solve the problems of low calculation efficiency and insufficient detection accuracy of information analysis method of electricity data anomaly in the prior art,a new type of abnormal electricity data analysis system is designed.The system relies on local matrix reconstruction(LMR)to realize abnormal electric energy data detection,and characterizes the power consumption mode by using 5 daily load characteristics instead of high-dimensional daily load curves.Principal component analysis(PCA)is combined to calculate the weighted reconstruction error in the local range,and finally the reconstruction error of each sample is compared with its neighboring samples to calculate the local outlier score.The experimental results show that the system has high accuracy in processing abnormal electricity data with the error rate of only 4.2%upon applying 2TB test data.The proposed method greatly improves the ability of information analysis of abnormal data.
关 键 词:智能制造业 异常电能数据 局部矩阵重构 主成分分析 智能电能表
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43