检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张春[1,2] 隋彦臣 ZHANG Chun;SUI Yanchen(School of Safety Science and Engineering,Liaoning Technical University,Fuxin Liaoning 123000,China;Key Laboratory of Mine Power Disaster and Prevention of Ministry of Education,Liaoning Technical University,Huludao Liaoning 125105,China)
机构地区:[1]辽宁工程技术大学安全科学与工程学院,辽宁阜新123000 [2]辽宁工程技术大学矿山热动力灾害与防治教育部重点实验室,辽宁葫芦岛125105
出 处:《中国安全生产科学技术》2024年第5期177-183,共7页Journal of Safety Science and Technology
基 金:国家自然科学基金项目(52174183,51774170)。
摘 要:为了对采空区煤氧化升温的温度进行预测,在内蒙古某煤矿16402综放工作面进行长期的采空区气体和温度观测实验,采集到准确的采空区煤氧化升温过程中气体及温度数据,提出1种基于网格优化双层随机森林(WG-DRF)的采空区煤氧化升温预测方法,用该方法构建预测模型并与传统随机森林、BP神经网络和支持向量回归模型的预测结果进行对比。研究结果表明:WG-DRF模型预测的平均绝对误差MAE,均方误差MSE,决定系数R~2分别为1.725,6.158,0.903,优于其他模型。通过更换数据集对WG-DRF方法进行测试,验证双层随机森林模型具有较强的泛化性。研究结果可为采空区煤氧化升温的温度预测提供参考。In order to predict the temperature of coal oxidation temperature rise in goaf,a long-term observation experiment of goaf gas and temperature was carried out on the 16402 fully mechanized caving face of a coal mine in Inner Mongolia to collect accurate gas and temperature data during the process of coal oxidation heating in goaf.A method for predicting the coal oxidation temperature rise in goaf based on the grid optimization double-layer random forest(WG-DRF)was proposed.The prediction model was constructed by this method and compared with the prediction results of traditional random forest,BP neural network and support vector regression model.The results show that the mean absolute error MAE,mean square error MSE and coefficient of determination R 2 of WG-DRF model are 1.725,6.158 and 0.903,respectively,which are better than the other models.The WG-DRF method is tested by changing the data set,and it verified that the double-layer random forest model has strong generalization.The research results can provide reference for the temperature prediction of coal oxidation temperature rise in goaf.
关 键 词:采空区 煤氧化升温 温度预测 网格优化双层随机森林
分 类 号:X936[环境科学与工程—安全科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222