检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘振洋 王爱文[1,2] 刘晓林 LIU Zhen-yang;WANG Ai-wen;LIU Xiao-lin(School of Mechanics and Engineering,Liaoning Technical University,Fuxin 123000,China;Institute of Disaster Rock Mechanics,Liaoning University,Shenyang 110036,China;School of Resources Environment and Architectural Engineering,Chifeng University,Chifeng 024000,China)
机构地区:[1]辽宁工程技术大学力学与工程学院,辽宁阜新123000 [2]辽宁大学灾害岩体力学研究所,沈阳110036 [3]赤峰学院资源环境与建筑工程学院,内蒙古赤峰024000
出 处:《长江科学院院报》2024年第5期139-148,共10页Journal of Changjiang River Scientific Research Institute
基 金:国家自然科学基金面上项目(51974150);辽宁省“兴辽英才计划”项目(XLYC2007025)。
摘 要:为建立能够准确描述岩石变形过程中能量演化规律的力学模型,提出利用三剪能量屈服准则和弹性剪应变能获取岩石黏聚力与内摩擦角,以及基于三剪能量塑性势函数获取剪胀角的方法,依据所提方法和岩石循环加卸载试验数据,得到了各级围压下不同塑性累积阶段岩石的弹性模量、黏聚力、内摩擦角及剪胀角等参数,发现随着塑性变形的增大,弹性模量呈负指数关系减小,黏聚力峰前线性增大而峰后呈负指数减小,内摩擦角满足比例参数为1、形状参数为1.5的Weibull函数,剪胀角线性减小;随着围压的增大,弹性模量和黏聚力均呈线性关系增大而剪胀角呈线性减小。建立岩石三剪能量弹塑性耦合力学模型,实现了模型在有限差分软件中的二次开发并编写了能量演化监测程序。模拟岩石室内试验,结果表明所建模型能较准确地描述岩石后继屈服过程中的硬化软化、剪胀、围压效应以及能量演化等力学行为。研究成果可为从能量角度研究岩体失稳提供理论支撑和现实手段。To accurately depict energy evolution during rock deformation,we propose methodologies for computing rock cohesion and internal friction angle using elastic shear strain energy and the triple shear energy yield criterion.Additionally,we introduce a method for determining the dilatancy angle based on the triple shear energy plastic potential function.Leveraging these approaches alongside data from cyclic loading and unloading tests on rocks,we derive the elastic modulus,cohesion,internal friction angle,and dilatancy angle at various plastic accumulation stages under different confining pressures.Our findings reveal a negative exponential decrease in elastic modulus with increasing plastic deformation,linear increases in pre-peak cohesion,and negative exponential decreases in post-peak cohesion.The internal friction angle conforms to a Weibull function with proportional and shape parameters of 1 and 1.5,respectively,while the dilatancy angle decreases linearly.Furthermore,elevating confining pressure leads to linear increases in elastic modulus and cohesion,accompanied by a linear decrease in the dilatancy angle.We establish a triple shear energy elasto-plastic coupling mechanical model and integrate it into finite difference software,developing code to monitor energy evolution.Through simulated triaxial compression tests on rocks,our model accurately captures rock mechanical behaviors during subsequent yielding,encompassing phenomena such as hardening,softening,dilatancy,confining pressure effects,and energy evolution.These findings furnish both theoretical insights and practical tools for examining rock mass instability from an energy perspective.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147