检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王越[1] 昝糈莉 李兆永 邸苏闯 朱祺琪 李佳伦 王彦强 李巧玲 WANG Yue;ZAN Xuli;LI Zhaoyong;DI Suchuang;ZHU Qiqi;LI Jialun;WANG Yanqiang;LI Qiaoling(Hohai University,Nanjing 210098,China;Beijing Institute of Water Science and Technology,Beijing 100048,China;Heze Yellow River Diversion Irrigation Engineering Management Service Center,Heze 274000,China;China University of Geosciences,Wuhan 430074,China;Beijing River and Lake Basin Management Center,Beijing 102600,China)
机构地区:[1]河海大学,江苏南京210098 [2]北京市水科学技术研究院,北京100048 [3]菏泽市引黄灌溉工程管理服务中心,山东菏泽274000 [4]中国地质大学,湖北武汉430074 [5]北京市河湖流域管理事务中心,北京102600
出 处:《北京水务》2024年第2期36-42,共7页Beijing Water
基 金:2023年度北京水务科技开放项目(SK-2022-001-DSJ):“河湖生态管控空间重点监管对象遥感智能识别技术研究”。
摘 要:目前河道管理范围内的“四乱”监管对象的排查主要依赖于人工巡查和遥感影像目视解译,成本高、效率低且问题发现能力一般。采用智能识别技术成为清“四乱”常态化的关键,然而河湖“四乱”量大类杂、分散隐蔽,导致传统模型鲁棒性低,识别精度一般。为此,以北运河河道管理范围内的坑塘养殖、堆放问题、农业大棚及临河房屋等4种地类作为研究对象,提出基于Transformer模型的全局局部一体化多尺度细节智能遥感深度学习框架,实现了自动适应多类型、多尺度、多级别的大规模遥感影像的智能识别。同时通过空间叠加分析技术,高效聚焦“四乱”增量问题,为水务监管工作提供技术支持。结果表明,在北运河流域河湖“四乱”监管对象的预测识别中,该模型的MIo U和MPA分别达到了80.42%和85.91%,满足水务工作需求,并可为相关问题提供借鉴价值。The inspection of the"Four Illegal Behaviors"within river management areas mainly relies on manual patrols and visual interpretation of remote sensing images.This approach results indicated with high costs,low efficiency,and limited problem detection capabilities.Therefore,the key approach to establish regular and effective management of the"Four Illegal Behaviors"lies in the adoption of intelligent recognition technology.However,the"Four Illegal Behaviors"around rivers and lakes are diverse,widespread,and covert,which led to low robustness and moderate accuracy in traditional models.To address these challenges,this research focused on four land categories within the management scope of the North Canal River including pond breeding,stacking problems,agricultural greenhouses,and riverfront houses.A comprehensive and localized integrated multi-scale detail intelligent remote sensing deep learning framework was proposed based on the Transformer model.This framework enabled intelligent recognition of large-scale remote sensing images,adapting to multiple types,scales,and levels automatically.Additionally,spatial superposition analysis technology was utilized to efficiently target on the incremental problems associated with the"Four Disruptions,"which provide technical support for water management supervision.These results demonstrated that the proposed model achieved an MIoU(Mean Intersection over Union)of 80.42%and an MPA(Mean Pixel Accuracy)of 85.91%in the prediction and identification of supervised objects related to the"Four Illegal Behaviors"in rivers and lakes within the North Canal Basin.These findings will meet the requirements of water management tasks and offer valuable insights for related issues.
关 键 词:智能识别 河湖四乱 Transformer神经网络 北运河流域
分 类 号:X52[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117