Infrared radiation characteristics of dagger-type hypersonic missile  

在线阅读下载全文

作  者:Xubo DU Qingzhen YANG Haoqi YANG Jin BAI Yongqiang SHI 

机构地区:[1]School of Power and Energy,Northwestern Polytechnical University,Xi’an 710129,China

出  处:《Chinese Journal of Aeronautics》2024年第4期137-150,共14页中国航空学报(英文版)

基  金:supported by the National Defense Science and Technology Pre-Research Fund, China (No. KJXYY2019054/M51)。

摘  要:Hypersonic vehicles emit strong infrared radiation from their high-temperature exhaust plume and body, which is critical for infrared early warning, tracking, and guidance. In this work, a comprehensive analysis is conducted on the factors involved in air dissociation reaction within the shock layer of hypersonic missile heads, as well as the multi-component afterburning effect of the exhaust plume. A novel Reverse Monte Carlo Method(RMCM) is proposed for infrared radiation calculation, which utilizes two-dimensional Low-Discrepancy Sequences(LDS) to improve computational accuracy. The numerical calculations for a dagger-type missile show that afterburning reactions increase the temperature on the centerline of the outlet exhaust plume by about 1000 K. The total infrared radiation intensity of the missile is the highest in the 1–3 μm band, with the hightemperature wall of the nozzle being the primary source of solid radiation, and gas radiation primarily coming from H_(2)O. The radiation intensity of the missile exhaust plume in the 3–5 μm band is the highest, with radiation sources primarily coming from CO_(2), CO, and HCl. Afterburning reactions of the exhaust plume increase the total infrared radiation intensity of the missile by about 0.7times. These results can provide reference for the detection and guidance of hypersonic missiles.

关 键 词:Hypersonic vehicles Infrared radiation Monte Carlo methods Low-discrepancy sequences Exhaust plume AFTERBURNING 

分 类 号:TJ760[兵器科学与技术—武器系统与运用工程] TN219[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象