检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chenwei ZHAO Zecan TU Junkui MAO Jian HUI Pingting CHEN
机构地区:[1]College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 21016,China [2]Integrated Energy Institute,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
出 处:《Chinese Journal of Aeronautics》2024年第4期524-541,共18页中国航空学报(英文版)
基 金:co-supported by the Science Center for Gas Turbine Project, China (No. P2022-B-Ⅱ-025-001);the National Science and Technology Major Project, China (No. Y2019-Ⅰ-0018-0017)。
摘 要:A new thermal protection design method for hypersonic vehicle's leading edge is proposed, which can effectively reduce temperature of the leading edge without additional cooling measures. This method reduces the leading-edge's temperature by the multi-scale collaborative design of the macroscopic thermal optimization and the mesoscopic woven structures of Three-dimensional Orthogonal Woven Ceramic Matrix Composites(TOCMC). The macroscopic thermal optimization is achieved by designing different mesoscopic woven structures in different regions to create combined heat transfer channels to dredge the heat. The combined heat transfer channel is macroscopically represented by the anisotropic thermal conductivity of TOCMC. The thermal optimization multiple linear regression model is established to optimize the heat transport channel, which predicts Theoretical Optimal Thermal Conductivity Configuration(TOTCC) in different regions to achieve the lowest leading-edge temperature. The function-oriented mesostructure design method is invented to design the corresponding mesostructure of TOCMC according to the TOTCC, which consists of universal thermal conductivity prediction formulas for TOCMC. These universal formulas are firstly derived based on the thermal resistance network method, which is verified by experiments with an error of 6.25%. The results show that the collaborative design method can effectively reduce the leading edge temperature by about 12.8% without adding cooling measures.
关 键 词:Multi-scale collaborative design Thermal optimization Ceramic matrix composite Hypersonic vehicle Thermal protection Intelligent optimization
分 类 号:V214.8[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166