Multi-scale collaborative design method for macroscopic thermal optimization and mesoscopic woven structure of hypersonic vehicle's TOCMC leading edge  

在线阅读下载全文

作  者:Chenwei ZHAO Zecan TU Junkui MAO Jian HUI Pingting CHEN 

机构地区:[1]College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 21016,China [2]Integrated Energy Institute,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

出  处:《Chinese Journal of Aeronautics》2024年第4期524-541,共18页中国航空学报(英文版)

基  金:co-supported by the Science Center for Gas Turbine Project, China (No. P2022-B-Ⅱ-025-001);the National Science and Technology Major Project, China (No. Y2019-Ⅰ-0018-0017)。

摘  要:A new thermal protection design method for hypersonic vehicle's leading edge is proposed, which can effectively reduce temperature of the leading edge without additional cooling measures. This method reduces the leading-edge's temperature by the multi-scale collaborative design of the macroscopic thermal optimization and the mesoscopic woven structures of Three-dimensional Orthogonal Woven Ceramic Matrix Composites(TOCMC). The macroscopic thermal optimization is achieved by designing different mesoscopic woven structures in different regions to create combined heat transfer channels to dredge the heat. The combined heat transfer channel is macroscopically represented by the anisotropic thermal conductivity of TOCMC. The thermal optimization multiple linear regression model is established to optimize the heat transport channel, which predicts Theoretical Optimal Thermal Conductivity Configuration(TOTCC) in different regions to achieve the lowest leading-edge temperature. The function-oriented mesostructure design method is invented to design the corresponding mesostructure of TOCMC according to the TOTCC, which consists of universal thermal conductivity prediction formulas for TOCMC. These universal formulas are firstly derived based on the thermal resistance network method, which is verified by experiments with an error of 6.25%. The results show that the collaborative design method can effectively reduce the leading edge temperature by about 12.8% without adding cooling measures.

关 键 词:Multi-scale collaborative design Thermal optimization Ceramic matrix composite Hypersonic vehicle Thermal protection Intelligent optimization 

分 类 号:V214.8[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象