检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Chinese Journal of Aeronautics》2024年第4期574-592,共19页中国航空学报(英文版)
基 金:supported by Defense Industrial Technology Development Program (Grant No. JCKY2021605B003);National Natural Science Foundation of China for Creative Research Groups (Grant No. 51921003);Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX20_0181)。
摘 要:In flat jet electrochemical milling, the electrolyte forms a backward parallel flow after impacting the workpiece, resulting in a weak current density distribution on the workpiece. Poor surface quality usually occurs on the machined titanium alloy surface because it inevitably suffers from the weak current density. In this study, a method of flat jet electrochemical milling with tailoring the backward parallel flow was proposed to eliminate the negative effects caused by the weak current density. Multiphysics simulations are carried out to comprehend the mechanism of flat jetEC milling with tailoring backward parallel flow and better construct the novel tool electrode.Experiments on flat jet electrochemical milling of TC4 alloy with and without tailoring backward parallel flow are conducted. The results reveal that, compared with flat jet electrochemical milling without tailoring backward parallel flow, the recommended tool reduces the surface roughness by86% to 93%, and improves the material removal rate by 93% to 163% with different feed rates.Additionally, the recommended tool is more conducive to maintaining the inherent hardness of the material. Finally, a surface with low Sa of 0.37 μm is obtained.
关 键 词:Flat jet electrochemical milling TC4 alloy Surface roughness Micro-hardness Material removal rate
分 类 号:TG54[金属学及工艺—金属切削加工及机床]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28