检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yu Dong Christy Jie Liang Yi Chen Jie Hua
机构地区:[1]School of Computer Science,University of Technology Sydney,Sydney,NSW,2007,Australia [2]Beijing Key Laboratory of Big Data Technology for Food Safety,Beijing Technology and Business University,Beijing,100048,China
出 处:《Computational Visual Media》2024年第1期161-186,共26页计算可视媒体(英文版)
基 金:This work is supported by National Natural Science Foundation of China(NSFC)under Grant No.61972010;UTS–CSC Scholarship by the University of Technology Sydney and China Scholarship Council under Agreement No.201908200009.
摘 要:The visual modeling method enables flexible interactions with rich graphical depictions of data and supports the exploration of the complexities of epidemiological analysis.However,most epidemiology visualizations do not support the combined analysis of objective factors that might influence the transmission situation,resulting in a lack of quantitative and qualitative evidence.To address this issue,we developed a portrait-based visual modeling method called+msRNAer.This method considers the spatiotemporal features of virus transmission patterns and multidimensional features of objective risk factors in communities,enabling portrait-based exploration and comparison in epidemiological analysis.We applied+msRNAer to aggregate COVID-19-related datasets in New South Wales,Australia,combining COVID-19 case number trends,geo-information,intervention events,and expert-supervised risk factors extracted from local government area-based censuses.We perfected the+msRNAer workflow with collaborative views and evaluated its feasibility,effectiveness,and usefulness through one user study and three subject-driven case studies.Positive feedback from experts indicates that+msRNAer provides a general understanding for analyzing comprehension that not only compares relationships between cases in time-varying and risk factors through portraits but also supports navigation in fundamental geographical,timeline,and other factor comparisons.By adopting interactions,experts discovered functional and practical implications for potential patterns of long-standing community factors regarding the vulnerability faced by the pandemic.Experts confirmed that+msRNAer is expected to deliver visual modeling benefits with spatiotemporal and multidimensional features in other epidemiological analysis scenarios.
关 键 词:visual modeling epidemiological analysis SPATIOTEMPORAL MULTIDIMENSIONAL COVID-19
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.240.165