机构地区:[1]东南大学智能运输系统(ITS)研究中心,江苏南京211189 [2]综合交通运输理论交通运输行业重点实验室(南京现代综合交通实验室),江苏南京211100 [3]东南大学交通学院,江苏南京211189
出 处:《交通运输工程学报》2024年第2期232-242,共11页Journal of Traffic and Transportation Engineering
基 金:国家重点研发计划(2020YFB1600102);国家自然科学基金项目(42074039);综合交通运输理论交通运输行业重点实验室(南京现代综合交通实验室)开放课题(MTF2023013)。
摘 要:为了解决机场智慧化程度评价过程中遇到的指标类型繁多、覆盖范围广泛,且指标间关系错综复杂、量纲不统一、难以进行定量分析的难题,优选了传统的评价方法,并将改进后的优劣解距离(TOPSIS)法和层次分析法(AHP)进行融合,提出了专门针对机场智慧化程度评价的相对零主观(ZR)算法;为确保评价结果的准确,利用专家意见与客观判断结果对机场智慧化程度评价体系中的功能指标权重进行了计算,基于江苏省某机场通过ZR算法进行了机场智慧化程度评价。研究结果表明:2018年某机场智慧化程度评分为65.64,2022年某机场智慧化程度评分为77.08,说明机场内各项智慧智能设备在不断更新迭代,机场智慧化程度也在不断提高;2022年,机场应急保障下的二级安全运行监测指标较2018年提高了65.7%,人身安全检查指标提高了17.1%,应急与安全指标提高了16.2%,主要原因在于某机场近年来大力发展人工智能分析系统,引进了航站楼出入口人脸识别系统,完善了站坪作业安全监控平台,在一定程度上提高了机场安全的智慧化程度;陆侧交通指标2018年评分为2.34,2022年为2.54,评分变化较小,因此,智慧化程度发展迟缓,在未来的建设中需进一步加强资源投入。To solve the issues such as various indicators,wide coverage,complex relationships among indicators,and non-uniform dimensions encountered in the evaluation process of airport intelligence degree,which make it difficult to conduct quantitative analysis,the traditional evaluation methods were optimized,and the improved technique for order preference by similarity to an ideal solution(TOPSIS)method was integrated with the analytic hierarchy process(AHP).Then,a zero-subjective relative(ZR)algorithm was proposed for the airport intelligence degree evaluation.To ensure the accuracy of the evaluation results,the weights of functional indicators in the airport intelligence evaluation system were calculated by using expert opinions and objective judgment results.At last,a case study of an airport in Jiangsu Province was given to evaluate the intelligence degree by using the ZR algorithm.Research results show that in 2018,the intelligence degree of the airport scores 65.64,and in 2022,the intelligence degree of the airport scores 77.08,indicating that various intelligent devices in the airport are constantly updated,and the intelligence degree of the airport improves constantly.The secondary security operation monitoring indicator under the airport emergency security improves by 65.7%in 2022 compared to 2018,the physical security screening indicator improves by 17.1%,and the emergency and security indicator improves by 16.2%.This can be explained by the fact that the airport vigorously developes the artificial intelligent analysis system in recent years,introduces the face recognition system at the terminal entrance and exit,and improves the station operation security monitoring platform.To a certain extent,it enhances the intelligence degree of airport security.The score of landside traffic indicator is 2.34 in 2018 and 2.54 in 2022,indicating no significant change,and the development of intelligence degree is slow.Therefore,resource investment should be strengthened in future construction.12 tabs,1 fig,31 refs.
关 键 词:民用机场 智慧化程度评价 相对零主观算法 改进TOPSIS法 权重计算
分 类 号:V351[航空宇航科学与技术—人机与环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...