检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高雅倩 孟生旺[1,2] Gao Yaqian;Meng Shengwang
机构地区:[1]中国人民大学统计学院 [2]中国人民大学应用统计科学研究中心
出 处:《统计研究》2024年第4期126-140,共15页Statistical Research
基 金:国家社会科学基金重点项目“巨灾债券定价与风险管理的统计建模研究”(22ATJ005);教育部人文社会科学重点研究基地重大项目“数字时代风险管理与精算模型研究”(22JJD910003)。
摘 要:Tweedie回归是保险损失预测和风险定价的主要工具之一。为充分利用大数据、物联网、机器学习等技术促进保险业的数字化转型,实现更加精准的风险识别和风险定价,本文将传统的Tweedie广义线性模型推广到双参数形式,并结合机器学习算法,提出双参数Tweedie梯度提升树模型和双参数Tweedie组合神经网络模型。基于我国一家保险公司的车联网大数据,提取了新的驾驶行为风险因子。通过实证研究检验了双参数Tweedie梯度提升树和双参数Tweedie组合神经网络在风险识别以及风险定价中的有效性,为促进我国保险业数字化转型提供了一种新的模型和方法。Tweedie regression is one of the most widely used models for loss prediction and risk pricing in the insurance industry.In order to make full use of big data,Internet of Things,machine learning,and other technologies to promote the digital transformation of the insurance industry and achieve more accurate risk identification and risk pricing.This parper extend the traditional Tweedie generalized linear model to the double-parameter form.Combined with machine learning algorithm,the double Tweedie gradient boosting tree and the double Tweedie combined neural network model are proposed.In addition,we get the telematics data from a Chinese insurance company and extract new driving behavior factors for risk pricing.The empirical study shows that using the new driving behavior factors,the double Tweedie gradient boosting tree and the double Tweedie combined neural network model can effectively improve the risk identification and risk pricing.The new models may be used to promote digital transformation of the insurance industry.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49