检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Chinese Annals of Mathematics,Series B》2024年第2期221-234,共14页数学年刊(B辑英文版)
基 金:supported by the National Natural Science Foundation of China(Nos.11801186,11901218)。
摘 要:A toric origami manifold,introduced by Cannas da Silva,Guillemin and Pires,is a generalization of a toric symplectic manifold.For a toric symplectic manifold,its equivariant Chern classes can be described in terms of the corresponding Delzant polytope and the stabilization of its tangent bundle splits as a direct sum of complex line bundles.But in general a toric origami manifold is not simply connected,so the algebraic topology of a toric origami manifold is more difficult than a toric symplectic manifold.In this paper they give an explicit formula of the equivariant Chern classes of an oriented toric origami manifold in terms of the corresponding origami template.Furthermore,they prove the stabilization of the tangent bundle of an oriented toric origami manifold also splits as a direct sum of complex line bundles.
关 键 词:Equivariant Chern classes Toric origami manifolds Unitary structures Spin structures
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7