Equivariant Chern Classes of Orientable Toric Origami Manifolds  

在线阅读下载全文

作  者:Yueshan XIONG Haozhi ZENG 

机构地区:[1]School of Mathematics and StatisticsHuazhong University of Science and Technology,Wuhan 430074,China

出  处:《Chinese Annals of Mathematics,Series B》2024年第2期221-234,共14页数学年刊(B辑英文版)

基  金:supported by the National Natural Science Foundation of China(Nos.11801186,11901218)。

摘  要:A toric origami manifold,introduced by Cannas da Silva,Guillemin and Pires,is a generalization of a toric symplectic manifold.For a toric symplectic manifold,its equivariant Chern classes can be described in terms of the corresponding Delzant polytope and the stabilization of its tangent bundle splits as a direct sum of complex line bundles.But in general a toric origami manifold is not simply connected,so the algebraic topology of a toric origami manifold is more difficult than a toric symplectic manifold.In this paper they give an explicit formula of the equivariant Chern classes of an oriented toric origami manifold in terms of the corresponding origami template.Furthermore,they prove the stabilization of the tangent bundle of an oriented toric origami manifold also splits as a direct sum of complex line bundles.

关 键 词:Equivariant Chern classes Toric origami manifolds Unitary structures Spin structures 

分 类 号:O186.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象