Evolutionary game dynamics of combining two different aspiration-driven update rules in structured populations  

在线阅读下载全文

作  者:杨智昊 杨彦龙 Zhi-Hao Yang;Yan-Long Yang(Mathematics and Statistics School,Guizhou University,Guiyang 550025,China)

机构地区:[1]Mathematics and Statistics School,Guizhou University,Guiyang 550025,China

出  处:《Chinese Physics B》2024年第5期182-191,共10页中国物理B(英文版)

基  金:Project supported by the Doctoral Foundation Project of Guizhou University(Grant No.(2019)49);the National Natural Science Foundation of China(Grant No.71961003);the Science and Technology Program of Guizhou Province(Grant No.7223)。

摘  要:In evolutionary games,most studies on finite populations have focused on a single updating mechanism.However,given the differences in individual cognition,individuals may change their strategies according to different updating mechanisms.For this reason,we consider two different aspiration-driven updating mechanisms in structured populations:satisfied-stay unsatisfied shift(SSUS)and satisfied-cooperate unsatisfied defect(SCUD).To simulate the game player’s learning process,this paper improves the particle swarm optimization algorithm,which will be used to simulate the game player’s strategy selection,i.e.,population particle swarm optimization(PPSO)algorithms.We find that in the prisoner’s dilemma,the conditions that SSUS facilitates the evolution of cooperation do not enable cooperation to emerge.In contrast,SCUD conditions that promote the evolution of cooperation enable cooperation to emerge.In addition,the invasion of SCUD individuals helps promote cooperation among SSUS individuals.Simulated by the PPSO algorithm,the theoretical approximation results are found to be consistent with the trend of change in the simulation results.

关 键 词:evolutionary game dynamics aspiration-driven update structured populations 

分 类 号:O225[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象