检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王坤 黄依宁 许敏鹏 顾晓松 明东 WANG Kun;HUANG Yining;XU Minpeng;GU Xiaosong;MING Dong(Academy of Medical Engineering and Translational Medicine,Tianjin University,Tianjin 300072,China)
机构地区:[1]天津大学医学工程与转化医学研究院,天津300072
出 处:《信息通信技术与政策》2024年第5期2-11,共10页Information and Communications Technology and Policy
基 金:国家自然科学基金项目(No.62206198、No.62122059)。
摘 要:脑机接口(Brain-Computer Interface,BCI)是人类大脑与外界环境之间的直接信息交流通路,在人体运动功能康复、替代、增强等多方面日益凸显其重要科学意义与应用价值。基于运动意图的脑机接口范式作为最自然的脑机交互方式,受到研究者的广泛关注。对运动预备阶段的脑电特征进行解码能够使BCI响应速度更快、灵活度更高。然而,该阶段的脑电特征信号微弱,难以高效识别。针对上述挑战,围绕运动预备阶段脑电低频时域空间侧向性特征强化开展研究,设计了左右手自主按键运动任务,针对低频运动相关皮质电位特征,结合判别空间模式与任务相关成分分析两种算法,提出了一种新型复合空间模式滤波算法。实验结果显示,该算法平均识别正确率可达78.56%,优于已有文献报道,可为基于运动意图的高效脑机交互提供理论依据与技术支持。Brain-computer interface(BCI)establishes a direct information communication channel between the brain and the external environment,which has increasingly highlighted its important scientific significance and application value in many aspects of human motor function rehabilitation,replacement and enhancement.As the most natural brain-computer interaction mode,BCI paradigm based on movement intention has been widely concerned by researchers.The decoding of pre-movement EEG patterns can make BCI more responsive and flexible.However,the EEG features at this stage are weak and difficult to recognize efficiently.Based on the above challenges,research is focused on the enhancement of temporal and spatial lateral characteristics of pre-movement EEG in low frequency.Aleft and right hand self-paced keystroke task is designed,and a new composite spatial filtering algorithm is proposed by combining discriminative canonical pattern matching(DCPM)and task-related component analysis(TRCA).The results show that the average accuracy of EEG signal recognition under this algorithm can reach 78.56%,which is better than previous literature reports,and can provide theoretical basis and technical support for efficient brain-computer interaction based on motion intention.
分 类 号:R318[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7