基于微流控技术的磁流体对外加磁场及温度的太赫兹特性研究  

Terahertz Characteristics of External Magnetic Field and Temperature of Magnetic Fluid Based on Microfluidic Technology

在线阅读下载全文

作  者:梁冉 张欣睿 丁晨鑫 苏波[1] 张存林[1] LIANG Ran;ZHANG Xin-rui;DING Chen-xin;SU Bo;ZHANG Cun-lin(Department of Physics,Capital Normal University,Beijing Advanced Innovation Centre for Imaging Theory and Technology,Beijing Key Laboratory for Terahertz Spectroscopy and Imaging,Key Laboratory of Terahertz Optoelectronics,Ministry of Education,Beijing 100048,China)

机构地区:[1]首都师范大学物理系,太赫兹光电子学教育部重点实验室,太赫兹波谱与成像北京市重点实验室,北京成像理论与技术高精尖创新中心,北京100048

出  处:《光谱学与光谱分析》2024年第6期1532-1536,共5页Spectroscopy and Spectral Analysis

基  金:国家自然科学基金项目(61575131)资助。

摘  要:磁流体是将超微磁性粒子均匀地分布在载基液中,形成的胶态液体磁性材料,它打破了传统固体磁性材料的形态,是一种同时具有固体磁性和液体流动性的新型材料,具有非常广泛的应用前景。目前磁流体已经被应用于医学领域,已有研究表明,磁流体可被用于癌细胞的治疗、细胞的分离以及靶向给药等;另外,磁流体还可以应用于密封、润滑等方面。太赫兹波是指频率范围在0.1~10 THz,波长范围在30~3000μm的电磁辐射。由于许多生物分子的振动和转动模式均处于太赫兹波频段,并且太赫兹波的能量较低,不会破坏被测物品,所以太赫兹波可用于无损检测,是一种安全可靠的测量方法。微流控技术可用于对极少量液体样品的测量,具有操作简单、检测速度快、节约被测样品等优点。该研究将太赫兹技术与微流控芯片技术相结合,通过改变外加磁场的时间和温度,研究了磁流体的太赫兹时域谱和频域谱的变化情况,发现在外加不同时间的磁场强度时,随着时间的增加,磁流体的太赫兹时域谱图右移,频域谱图强度下降;外加不同温度时,随着温度的增加,同样出现时域谱图右移,透射强度降低的现象。初步认为磁流体中的磁性粒子在外加磁场下聚集定向排列,随着时间的延长,近似认为纳米粒子团簇半径增大,使得太赫兹波不易透过从而使其强度变低;在温度升高时,分子热运动加剧,分子振动和转动加强,使得太赫兹波不易透过进而强度变低。由于利用太赫兹研究磁流体特性方面的相关报道较少,该研究为探究磁流体提供了新的方法;对外加磁场下的磁流体太赫兹特性的研究可在医学领域的广泛应用,为太赫兹技术在生物医学方面提供了新的途径,为磁流体的深入应用和研究提供了技术支持。Magnetic fluid is a colloidal liquid magnetic material formed by uniformly distributing ultrafine magnetic particles in the carrier liquid.It breaks the traditional form of solid magnetic materials and is a new type of material with both solid magnetism and liquid fluidity,with an extensive range of applications.At present,magnetic fluids have been applied in the medical field,and research has shown that magnetic fluids can be used to treat cancer cells,separate blood vessels and cells,targeted drug delivery,etc.In addition,magnetic fluids can also be applied in sealing,lubrication,and other aspects.Terahertz waves refer to frequencies ranging from 0.1 to 10 THz and wavelengths ranging from 30 to 3000μm electromagnetic radiation.Because the vibration and rotation modes of many biomolecules are in the terahertz frequency band,and the energy of terahertz waves is low,they will not damage the tested object.Therefore,terahertz waves can be used for non-destructive testing and are a safe and reliable measurement method.Microfluidic technology can be used to measure tiny amounts of liquid samples,with advantages such as simple operation,fast detection speed,and saving of measured samples.This study innovatively combines terahertz technology with microfluidic chip technology to study the terahertz characteristics of magnetic fluids at different magnetic fields and temperatures at different times.It was found that when a magnetic field was applied at different times,as time increased,the terahertz time-domain spectrum of the magnetic fluid shifted to the right.The intensity of the frequency-domain spectrum decreased.When different temperatures are applied,as the temperature increases,the time-domain spectrum also shifts to the right,and the transmission intensity decreases.It is preliminarily believed that the magnetic particles in the magnetic fluid undergo aggregation and directional arrangement under both external magnetic field and electric field conditions.With the extension of time,the particle spacing decreases,a

关 键 词:太赫兹 磁流体 微流控芯片 磁场 

分 类 号:O433.1[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象