基于平滑非线性能量算子划分的尖峰相关特征癫痫发作自动检测算法  

Automatic seizure detection algorithm based on spike-related features of smoothed nonlinear energy operator division

在线阅读下载全文

作  者:何雪兰 吴江[1] 蒋路茸 HE Xuean;WU Jiang;JIANG Lurong(School of Information Science and Engineering,Zhejiang Sci-Tech University,Hangzhou 310018,China)

机构地区:[1]浙江理工大学信息科学与工程学院,杭州310018

出  处:《智能计算机与应用》2024年第3期128-132,共5页Intelligent Computer and Applications

基  金:浙江省基础公益项目(LGF19F010008);北京邮电大学泛网无线通信教育部重点实验室(BUPT)(KFKT-2018101);浙江省重点研发计(2022C03136);国家自然科学基金(61602417)。

摘  要:针对癫痫发作自动检测算法多集中于时域、频域等传统特征,无法全面表征癫痫脑电信号的信息等问题,本文结合癫痫脑电图中异常波振幅和频率提高的现象,提出一种基于平滑非线性能量算子划分的尖峰相关特征癫痫发作自动检测算法。该算法使用传统的时域、频域特征,结合尖峰相关性特征对脑电信号进行刻画,使用有监督的机器学习分类器,测试癫痫发作自动检测的有效性和可靠性。本文将提出的方法在开源数据集CHBMIT上进行了评估,获得了96.52%的准确率、95.65%的敏感性和97.09%的特异性。实验结果表明,基于平滑非线性能量算子划分的尖峰相关特征,能够作为癫痫脑电信息的补充,提高癫痫发作检测的性能。Most current seizure automatic detection algorithms focus on traditional features such as time domain and frequency domain,which cannot fully characterize the information of epileptic EEG signals.This paper proposes an automatic seizure detection algorithm based on spike correlation features divided by a smooth nonlinear energy operator,taking into account the phenomenon that the amplitude and frequency of abnormal waves in epileptic EEG will increase.The algorithm uses traditional time-domain and frequency-domain features,combined with spike correlation features to characterize the EEG signal,and uses supervised machine learning classifiers to test its effectiveness and reliability for automatic seizure detection.The research evaluates the proposed method on the open source dataset CHBMIT and obtains 96.52%on accuracy,95.65%on sensitivity and 97.09%on specificity.The experimental results show that the proposed spike-related features based on the smoothed nonlinear energy operator segmentation can be used as a complement to the epileptic EEG information to improve the performance of seizure detection.

关 键 词:癫痫发作检测 机器学习 尖峰相关性 平滑非线性能量算子 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP399[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象