检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐蕊 石燕楠 周喆 达展云[1] XU Rui;SHI Yannan;ZHOU Zhe;DA Zhanyun(Department of Rheumatology,the Affiliated Hospital of Nantong University,Jiangsu 226001;Department of Rheumatology,Suzhou Ninth People′s Hospital)
机构地区:[1]南通大学附属医院风湿免疫科,江苏226001 [2]苏州市第九人民医院风湿免疫科
出 处:《南通大学学报(医学版)》2024年第2期140-144,共5页Journal of Nantong University(Medical sciences)
基 金:南通市科技局课题(MS12021053)。
摘 要:目的:研究类风湿关节炎(rheumatoid arthritis,RA)患者发生骨质疏松的危险因素,并建立列线图预测模型。方法:共纳入283例RA患者,以8∶2的比例随机分成建模组(n=226)和验证组(n=57),分析RA患者发生骨质疏松的危险因素,建立预测模型。采用Bootstrap法对模型进行内部验证,验证组进行外部验证。利用ROC曲线的AUC和校准曲线对预测模型进行评价。结果:性别(P=0.046)、年龄(P=0.016)、病程(P=0.004)、红细胞沉降率(erythrocyte sedimentation rate,ESR)(P<0.001)和钙离子(calcium ion,Ca^(2+))浓度(P=0.004)是RA患者发生骨质疏松的独立危险因素(P<0.05)。根据以上危险因素,建立预测RA患者发生骨质疏松的列线图模型。校准曲线提示,建模组和验证组的预测值与实测值基本相符。建模组AUC为0.83,95%CI:0.78~0.88,验证组AUC为0.86,95%CI:0.78~0.88,表明此模型具有较好的预测效果。结论:以年龄、性别、病程、ESR及Ca^(2+)为预测因子构建的列线图模型可有效预测RA患者发生骨质疏松的概率。Objective:To investigate the risk factors for osteoporosis in rheumatoid arthritis(RA)patients and establish a alignment diagram prediction model.Methods:A total of 283 RA patients were included,and they were randomly divided into a modeling group(n=226)and a validation group(n=57)in an 8∶2 ratio.Independent risk factors for osteoporosis in RA patients were analyzed,and a alignment diagram prediction model was established.The model was internally validated using Bootstrap,and external validation was performed on the validation group.The prediction model was evaluated using the ROC curve AUC and calibration curve.Results:Gender(P=0.046),age(P=0.016),disease duration(P=0.004),erythrocyte sedimentation rate(ESR)(P<0.001),and calcium ion(Ca^(2+))concentration(P=0.004)were independent risk factors for osteoporosis in RA patients(P<0.05).Based on these risk factors,a alignment diagram prediction model for RA-related osteoporosis was established.The calibration curve indicated that the predicted values in both the modeling and validation groups were in good agreement with the observed values.The AUC for the modeling group was 0.83 with 95%CI of 0.78-0.88,and for the validation group,it was 0.86(95%CI:0.78-0.88),demonstrating that the model had a good predictive performance.Conclusion:The alignment diagram prediction model based on age,gender,disease duration,ESR,and Ca^(2+)effectively predicts the probability of osteoporosis in RA patients.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30