基于模型预测静态规划的高速多体船减纵摇控制  

Anti-pitching control of high-speed multihull based on model predictive static programming

在线阅读下载全文

作  者:张军[1] 仲铭杰 杨一帆 温昊 ZHANG Jun;ZHONG Ming-jie;YANG Yi-fan;WEN Hao(School of Electrical Information Engineering,Jiangsu University,Zhenjiang 212013,China;School of Aeronautical Engineering,Jiangsu Aviation Technical College,Zhenjiang 212134,China)

机构地区:[1]江苏大学电气信息工程学院,江苏镇江212013 [2]江苏航空职业技术学院航空工程学院,江苏镇江212134

出  处:《舰船科学技术》2024年第10期152-156,共5页Ship Science and Technology

基  金:国家自然科学基金资助项目(61503158,51379044)。

摘  要:为解决在海浪扰动下高速多体船的垂向稳定性变差问题,提出一种基于模型预测静态规划的减纵摇控制方法。考虑高速多体船模型不确定性、海浪噪声不符合高斯白噪声分布特点,根据噪声信息和误差信息设计平滑变结构滤波器,在线估计多体船的升沉速度、纵摇角速度,并将其引入到减摇控制中。在此基础上,基于模型预测静态规划提出多体船的减摇控制,采用终端偏差修正的求解方式,迭代更新控制输入,降低计算复杂度。最后,仿真实验表明了所提方法能有效抑制过大的升沉和纵摇运动幅度,以及减摇控制计算负荷小的优越性。To solve the problem of vertical stability deterioration of high-speed multihulls under wave disturbance,an anti-pitching control method is proposed based on model prediction static programming.Considering the non-linearity,time-varying parameters,and wave disturbance non-Gaussian characteristics of the multi-hull vertical motion model,a smooth variable structure filter based on noise information and error information is designed,and an on-line estimation of heave ve-locity and pitch angular is introduced into the anti-pitching control.On this basis,the anti-pitching control of multihulls is proposed based on the model prediction static programming,and the solution method of terminal deviation correction is ad-opted to iteratively update the control inputs and reduce the computational complexity.Finally,simulation experiments demonstrate the superiority of the proposed method in effectively suppressing excessive heave and pitch motion amplitude,as well as the small computational load of the anti-pitching control.

关 键 词:高速多体船 减纵摇控制 平滑变结构滤波器 模型预测静态规划 

分 类 号:U664.7[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象