基于SMOTE-XGBoost的外贸企业财务危机预警模型  被引量:2

Research on Financial Crisis Early Warning Model for Foreign Trade Listed Companies Based on SMOTE-XGBoost Algorithm

在线阅读下载全文

作  者:吴增源 金灵敏 韩香丽 王泽林 伍蓓 WU Zengyuan;JIN Lingmin;HAN Xiangli;WANG Zelin;WU Bei(College of Economics and Management,China Jiliang University,Hangzhou 310018,China;School of Management and E-business,Zhejiang Gongshang University,Hangzhou 310018,China)

机构地区:[1]中国计量大学经济与管理学院,杭州310018 [2]浙江工商大学管理工程与电子商务学院,杭州310018

出  处:《计算机工程与应用》2024年第11期281-289,共9页Computer Engineering and Applications

基  金:国家社会科学基金重点项目(22AGL002)。

摘  要:外需萎缩和保护主义加剧大大提高了外贸企业的经营风险,外贸企业陷入财务危机的风险加大。针对外贸企业财务危机预警准确率不高的难题,优化预警指标体系,并提出基于SMOTE-XGBoost的组合模型。建立融合财务指标和宏观外贸指标的财务危机预警指标体系;构建合成少数类过采样技术(SMOTE)和极限梯度提升算法(XGBoost)的组合模型,对我国外贸企业数据进行分析。研究发现SMOTE-XGBoost组合模型能够有效提高预测准确率,ACC、recall、F1-score、AUC值均优于其他模型,且具有良好的稳定性。该模型能够帮助外贸企业提前发现可能的财务风险,避免陷入财务危机。The operational risk of foreign trade enterprises is increasing under the context of external demand contraction and intensive protectionism,leading to a greater risk of financial crisis.In response to the challenge of low accuracy in predicting financial crises for foreign trade enterprises,the early warning indicator system is optimized,and a combined model based on SMOTE-XGBoost is proposed.Firstly,a financial crisis early warning indicator system is established by integrating financial indicators and macro foreign trade indicators.Secondly,a combined model integrating synthetic minority over-sampling technique(SMOTE)and extreme gradient boosting algorithm(XGBoost)is constructed to analyze data from foreign trade listed enterprises in China.The results show that this combined model can achieve more accurate prediction and better overall stability than other models,with superior ACC,recall,F1-score,and AUC.This model can be used to assist foreign trade enterprises in proactively identifying potential financial risks and avoiding falling into financial crises.

关 键 词:财务危机预警 外贸企业 不平衡数据 XGBoost 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象