检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王海勇[1] 潘海涛 WANG Haiyong;PAN Haitao(Smart Campus Research Center,College of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
机构地区:[1]南京邮电大学计算机学院智慧校园研究中心,南京210003
出 处:《计算机科学与探索》2024年第6期1627-1636,共10页Journal of Frontiers of Computer Science and Technology
基 金:国家自然科学基金(61872190);江苏省博士后科研资助计划项目(2020Z058)。
摘 要:近年来样本挖掘策略被融入人脸识别的损失函数中,显著提升了人脸识别性能,但大部分工作都集中在如何在训练阶段挖掘困难样本,没有考虑到困难样本中潜在的无法识别的样本图像,从而导致模型对低质量人脸图像的识别性能较差。针对该问题,提出了一种结合样本难度自适应和图像质量自适应的混合自适应损失函数MixFace。该损失函数将基于课程式学习的损失函数CurricularFace与图像自适应损失函数AdaFace相结合,将特征范数作为图像质量指标融入损失函数中,在关注图像质量的前提下在训练前期关注简单样本,后期关注困难样本,降低网络模型对困难样本中部分低质量不可识别样本的关注。分别使用CASIA-WebFace和MS1MV2数据集训练,MixFace在高质量测试集LFW、CFP_FP、AgeDB、CALFW和CPLFW上相比Curricular-Face和AdaFace有不同程度的性能提升,同时MixFace在中等质量测试集IJB-B、IJB-C以及低质量测试集TinyFace上显示出比CurricularFace和AdaFace更好的识别性能。实验结果表明,MixFace能有效降低无法识别图像的干扰,进而提升低质量人脸识别性能,同时受益于MixFace中课程式学习的方式,对于高质量人脸识别仍然能保持较好的性能。In recent years,the sample mining strategy has been integrated into the loss function of face recognition,significantly improving the performance of face recognition.But most of the work focuses on how to mine difficult samples during the training phase,without considering the potential unrecognized sample images in the difficult samples,resulting in poor recognition performance of the model for low-quality facial images.To solve this problem,this paper proposes a hybrid adaptive loss function MixFace that combines sample difficulty adaptation and image quality adaptation.The loss function combines the CurricularFace based on curriculum learning with the image adaptive loss function AdaFace.The feature norm is incorporated into the loss function as an image quality indicator.On the premise of focusing on image quality,this paper focuses on simple samples in the early training stage and difficult samples in the later training stage,reducing the network model’s attention to some low-quality unrecognized samples in difficult samples.Trained on CASIA-WebFace and MS1MV2 datasets,MixFace shows varying degrees of performance improvement compared with CurricularFace and AdaFace on high-quality test sets LFW,CFP_FP,AgeDB,CALFW,and CPLFW.At the same time,MixFace shows better recognition performance than CurricularFace and AdaFace on medium quality test sets IJB-B,IJB-C and low-quality test set TinyFace.Experimental results show that MixFace can effectively reduce the interference of unrecognized images,thereby improving the performance of low-quality face recognition.At the same time,benefiting from the curriculum learning method in MixFace,it can still maintain good performance for high-quality face recognition.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.207.166