检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:侯磊 刘金环 于旭 杜军威[1] HOU Lei;LIU Jinhuan;YU Xu;DU Junwei(School of Data Science,Qingdao University of Science and Technology,Qingdao,Shandong 266061,China;School of Computer Science and Technology,China University of Petroleum(East China),Qingdao,Shandong 266580,China)
机构地区:[1]青岛科技大学数据科学学院,山东青岛266061 [2]中国石油大学(华东)计算机科学与技术学院,山东青岛266580
出 处:《计算机科学》2024年第6期282-298,共17页Computer Science
基 金:国家自然科学基金(62202253,62172249);山东省自然科学基金(ZR2021QF074,ZR2021MF092)。
摘 要:随着人工智能的快速发展,深度学习已经在图像、文本和语音等可在欧氏空间表示的数据中取得了巨大成功,但却一直无法很好地应用于非欧氏空间。近年来,图神经网络在非欧几里得空间中展现出了强大的表示学习能力,并广泛应用于推荐系统、自然语言处理以及机器视觉等众多领域。图神经网络模型基于信息的传播机制,具体地,图中的目标节点通过聚合邻居节点的信息来更新自身的嵌入表示。利用图神经网络,可将众多现实问题(如社交网络、知识图谱和药物化学成分等)抽象成图网络,借助图中的连接边,对不同节点之间的依赖关系进行合理建模。鉴于此,对图神经网络进行了系统综述,首先介绍了图结构数据方面的基础知识,然后对图游走算法和不同类型的图神经网络模型进行了系统梳理。进一步地,详细阐述了当前图神经网络的通用框架和应用领域,最后对图神经网络的未来进行了总结与展望。With the rapid development of artificial intelligence,deep learning has achieved great success in data that can be represented in Euclidean spaces,such as images,text,and speech.However,it has been difficult to apply deep learning to non-Eucli-dean spaces.In recent years,with the emergence of graph neural networks,it has demonstrated powerful representation learning abilities in non-Euclidean spaces and has been widely applied in various fields such as recommendation systems,natural language processing,and computer vision.The graph neural network model is based on the mechanism of information propagation.Specifi-cally,the target node in the graph updates its embedding representation by aggregating the information of neighboring nodes.With graph neural networks,many real-world problems(such as social networks,knowledge graphs,and drug chemical compositions)can be abstracted into graph networks and the dependence relationships between different nodes can be modeled reasonably using the connecting edges in the graph.Therefore,this paper systematically reviews graph neural networks,introduces the basic knowledge of graph-structured data,and systematically reviews graph walk algorithms and different types of graph neural network models.Furthermore,it also details the current general framework and application areas of graph neural networks,and concludes with a summary and outlook on future research in graph neural networks.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222