检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李芷芊 郑嘉利[1,2] 陈奕君 张江波 LI Zhiqian;ZHENG Jiali;CHEN Yijun;ZHANG Jiangbo(School of Computer,Electrics and Information,Guangxi University,Nanning 530004,China;Guangxi Key Laboratory of Multimedia Communications and Network Technology,Nanning 530004,China)
机构地区:[1]广西大学计算机与电子信息学院,南宁530004 [2]广西多媒体通信与网络技术重点实验室,南宁530004
出 处:《计算机科学》2024年第6期375-383,共9页Computer Science
基 金:国家自然科学基金(62366004)。
摘 要:针对无线射频识别(RFID)网络规划的优化部署问题,提出一种基于Circle映射的嵌入正弦余弦算法和自适应阈值的改进型蛇算法(ESO)。在种群初始化阶段利用Circle混沌映射的均匀性和遍历性等特点,在局部搜索阶段和开发阶段分别引入正弦余弦算法(SCA)和自适应阈值等算法机制,弥补了蛇算法初始化过程不够均匀、容易陷入局部最优和收敛速度慢等缺点。在满足100%标签覆盖率、减少阅读器之间的碰撞干扰、实现阅读器的负载均衡,以及降低总的发射功率这4个目标的基础上,求解阅读器最佳的部署位置,将所提算法与粒子群算法(PSO)、灰狼算法(GWO)、樽海鞘算法(SSA)进行了对比分析。实验结果表明,改进型蛇算法在对RFID网络进行优化部署时寻优能力更强,对RFID网络部署的综合性能提升明显,在相同的实验条件下,ESO的最佳适应度值比PSO提高了28.1%,比GWO提高了17.7%,比SSA提高了22.9%,可以更有效地得出最优的RFID网络规划部署方案。Aiming at the optimal deployment of radio frequency identification(RFID)network planning,an enhanced snake optimizer based on the embedded sine cosine algorithm(SCA)and adaptive threshold is proposed.In the population initialization stage,taking advantage of the uniformity and ergodicity of the Circle chaotic map,the algorithm mechanisms such as sine cosine algorithm and adaptive threshold are introduced in the local search stage and the development stage,respectively,to get rid of the disadvantages of the snake optimizer such as uneven initialization process,easy to fall into local optimization and slow convergence speed.On the basis of meeting the four objectives of 100%label coverage,reducing the collision interference between readers and writers,achieving the load balance of readers and writers,and reducing the total transmission power,the optimal deployment location of readers is solved.Enhanced snake optimizer(ESO)is compared with particle swarm optimization(PSO),grey wolf optimizer(GWO),and salp swarm algorithm(SSA).Experimental results show that enhanced snake optimizer has a stronger ability to optimize the deployment of RFID network,and its overall performance is significantly improved.Under the same experimental conditions,the optimal fitness value of ESO is 28.1%higher than PSO,17.7%higher than GWO,and 22.9%higher than SSA,which can more effectively obtain the optimal RFID network planning and deployment scheme.
关 键 词:RFID网络 蛇算法 Circle映射 正弦余弦算法 自适应阈值 网络规划
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49