检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨红飞 杨华[2] 刘付文婷 江楠 邱国葳 巫俊达 徐金柱[2] YANG Hong-Fei;YANG Hua;LIUFU Wen-Ting;JIANG Nan;QIU Guo-Wei;WU Jun-Da;XU Jin-Zhu(Guandong Literature&Art Vocational College,Guangzhou 511400,China;Guangdong Provincial Key Laboratory of Silviculture,Protection and Utilization Guangdong Academy of Forestry,Guangzhou 510520,China;College of Biomedical Engineering,Guangzhou Medical University,Guangzhou 511436,China)
机构地区:[1]广东文艺职业学院,广州511400 [2]广东省森林培育与保护利用重点实验室/广东省林业科学研究院,广州510520 [3]广州医科大学生物医学工程学院,广州511436
出 处:《环境昆虫学报》2024年第3期765-772,共8页Journal of Environmental Entomology
基 金:广东省林业科技创新(2023KJCX020);广东省重点领域研发计划(2020B020214001)。
摘 要:海榄雌瘤斑螟Ptyomaxia syntaractis,红树植物白骨壤Avicennia marina最重要害虫,严重影响白骨壤生长和生态功能的发挥。为高效监测海榄雌瘤斑螟的种群发生动态,实时获得预警信息,本研究通过引入目标检测算法YOLO V5进行深度学习,对监测设备上的海榄雌瘤斑螟进行识别与计数,实时发布种群数量。采用黑光灯诱捕装置获取海榄雌瘤斑螟成虫图像,构建两种不同图像大小的数据集,采用旋转、增噪等方式增强图像数据集;对比了不同训练模型对采集图像的检测性能和不同图像大小对数据集识别结果的影响,用精确率、召回率、F1值、平均精度评估各模型的差异。测试结果表明,模型YOLO V5s对海榄雌瘤斑螟识别的精确率、召回率和F1值分别为96.13%、92.06%和0.93,并且能够很好的识别原始尺寸的图像。基于YOLO V5网络模型设计的海榄雌瘤斑螟识别计数模型识别准确率高,可满足海榄雌瘤斑螟种群监测与预警。Ptyomaxia syntaractis,the main pest of the mangrove plants Avicennia marina,affected the growth and ecological function of A.marina seriously.In order to efficiently monitor the population dynamics,obtain the early warning information and publish population numbers in real time,object detection algorithm YOLO V5 was introduced for deep learning to identify and count the moth on the monitoring equipment in this study.Black light trapping devices were used to obtain the adult images of P.syntaractis,and two datasets with different image sizes,enhanced by means of rotation and noise enhancement were constructed.The detection performance of different training models on acquired images and the effect of different image sizes on the recognition results of datasets were compared,and accuracy,recall rate,F1 value and average accuracy were used to evaluate the differences among the models.The results showed that the accuracy,recall rate and F1 value of YOLO V5s model for the identification P.syntaractis were 96.13%,92.06%and 0.93 respectively,and the model could well recognize the original size image.The identification and counting model based on YOLO V5 algorithm can be used in the population monitoring for its high recognition accuracy.
关 键 词:海榄雌瘤斑螟 深度学习 YOLO V5 自动识别 预警
分 类 号:Q968.1[生物学—昆虫学] S433[农业科学—农业昆虫与害虫防治]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222