检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mathematical Sciences,Jiangsu University,Jiangsu 212000,P.R.China
出 处:《Journal of Mathematical Research with Applications》2024年第3期408-426,共19页数学研究及应用(英文版)
基 金:Supported by the National Natural Science Foundation of China(Grant No.11801225)。
摘 要:The task of identifying the quintic PH curve G^(0)“closest”to a given planar Bézier curve with or without prescribed arc length is discussed here using Gauss-Legendre polygon and Gauss-Lobatto polygon respectively.By expressing the sum of squared differences between the vertices of Gauss-Legendre or Gauss-Lobatto polygon of a given Bézier and those of a PH curve,it is shown that this problem can be formulated as a constrained polynomial optimization problem in certain real variables,subject to two or three quadratic constraints,which can be efficiently solved by Lagrange multiplier method and Newton-Raphson iteration.Several computed examples are used to illustrate implementations of the optimization methodology.The results demonstrate that compared with Bézier control polygon,the method with Gauss-Legendre and Gauss-Lobatto polygon can produce the G^(0)PH curve closer to the given Bézier curve with close arc length.Moreover,good approximations with prescribed arc length can also be achieved.
关 键 词:Pythagorean-hodograph curves Gauss-Legendre polygon Gauss-Lobatto polygon constrained optimization Lagrange multiplier Newton-Raphson iteration
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.189.185.100