检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁兆明 李鸿燕 陈亮[3] 陈兵 孙辉 候文韬 夏春华 DING Zhaoming;LI Hongyan;CHEN Liang;CHEN Bing;SUN Hui;HOU Wentao;XIA Chunhua(Imaging Center,The Third Affiliated Hospital of Anhui Medical University,Hefei,Anhui 230000,China;不详)
机构地区:[1]安徽医科大学第三附属医院影像中心,安徽合肥230000 [2]中国科学技术大学,安徽合肥230000 [3]安徽医科大学,安徽合肥230000
出 处:《中国临床研究》2024年第5期709-713,共5页Chinese Journal of Clinical Research
基 金:安徽省卫生健康委科研项目(AHWJ2021b141)。
摘 要:目的探讨深度学习模型在腰椎磁共振T2加权成像(T2WI)矢状图像上全自动识别腰椎间盘退变程度的可行性。方法回顾性抽取2020年8月至2022年6月于安徽医科大学第三附属医院就诊并行腰椎MRI检查的94例患者的腰椎T2WI图像数据,共获得466个椎间盘,由两名放射科医生手动标注腰椎间盘,将数据随机分为训练集(300个)、调优集(72个)和测试集(94个),首先使用U-Net网络训练椎间盘分割模型,模型评价指标包括Dice系数和交并比(IoU)分数;然后利用SpineNet网络训练分类模型进行评价,评价指标包括准确度、敏感度、特异度、F1分数及ROC曲线。结果测试集中U-Net模型对腰椎间盘分割的平均Dice系数值及IoU分数分别为0.920、0.853;SpineNet分类模型对腰椎间盘退变分类诊断的准确度、特异度、敏感度分别为0.913、0.912、0.916,ROC曲线分析示,该模型区分腰椎间盘退变轻度vs中度、轻度vs重度、中度vs重度的AUC值分别为0.89、0.95、0.90。结论深度学习网络对腰椎间盘退变程度的全自动分类是可行的。Objective To investigate the feasibility of a deep learning model for the fully automatic classification of disc degeneration based on lumbar structures on sagittal T2WI images.Methods The lumbar T2WI image data of 94 patients who underwent lumbar spine MRI examination in the Third Affiliated Hospital of Anhui Medical University from August 2020 to June 2022 were retrospectively selected,and 466 discs were obtained.The lumbar intervertebral disc were manually annotated by 2 radiologists on sagittal T2WI images.The data were randomly divided into train set(n=300),validation set(n=72),and test set(n=94).Firstly,a U-Net network was used to train the disc segmentation model.The evaluation indexes of the model included Dice coefficient and IoU score.Then,SpineNet network was used to train the classification model,and the evaluation indexes of the model included accuracy,sensitivity,specificity,F1 score,and ROC curves.Results In the test set,the dice coefficient and IoU values of U-Net model for lumbar disc segmentation were 0.920 and 0.853,respectively.The accuracy,specificity and sensitivity value of SpineNet classification models for lumbar disc degeneration were 0.913,0.912 and 0.916,respectively.The ROC curve analysis showed that the AUC values for distinguishing mild to moderate,mild to serious,and moderate to serious lumbar disc degeneration were 0.89,0.95,and 0.90,respectively.Conclusion It is feasible to realize the fully automatic classification of disc degeneration based on deep learning network.
关 键 词:腰椎 椎间盘退变 深度学习网络 T2WI矢状图像 U-Net模型 分割模型 分类模型
分 类 号:R445.2[医药卫生—影像医学与核医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145