检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏可成 余勇夫 秦国友 WEI Ke-cheng;YU Yong-fu;QIN Guo-you(Department of Biostatistics,School of Public Health,Fudan University,Shanghai 200032,China)
机构地区:[1]复旦大学公共卫生学院生物统计学教研室,上海200032
出 处:《复旦学报(医学版)》2024年第3期439-442,共4页Fudan University Journal of Medical Sciences
基 金:国家自然科学基金(82173612);上海市市级科技重大专项(ZD2021CY001)。
摘 要:简要介绍变系数模型,并以变系数Cox模型为例,通过实际数据分析展示其在医学和公共卫生领域的应用,为相关研究提供方法学参考。实例基于某疾病预防控制中心部分慢病管理数据,拟合变系数Cox模型,探索高血压人群中体重指数(body mass index,BMI)与死亡风险之间的时变关联。结果显示,体重过低(BMI<18.5 kg/m^(2))与较高的死亡风险相关,但其关联程度随着随访时间的延长而逐渐减弱;超重(23 kg/m^(2)≤BMI<25 kg/m^(2))与较低的死亡风险相关,其关联程度随着随访时间的延长而逐渐减弱。变系数模型能够捕捉到暴露因素对于结局的影响如何随着其他变量的改变而变化,有助于更为全面地理解变量间的复杂关系,在医学和公共卫生研究中有很好的应用和推广价值。This paper briefly introduced the varying coefficient model and used the varying coefficient Cox model as an example to demonstrate its application in the fields of medicine and public health through real data analysis,thereby provided methodological references for related research.The example was based on chronic disease management data from a Center for Disease Control and Prevention,fitting a varying coefficient Cox model to explore the time-varying association between body mass index(BMI)and mortality risk among a hypertensive population.The results showed that being underweight(BMI<18.5 kg/m^(2))was associated with a higher risk of mortality,but this association weakened over time;being overweight(23 kg/m^(2)≤BMI<25 kg/m^(2))was associated with a lower risk of mortality,and this association also weakened over time.The varying coefficient model captured how the impact of exposure factors on outcomes changed with other variables,helping to comprehensively understand the complex relationships between variables,and had significant application and promotion value in medical and public health research.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.173.30